984 resultados para Numerical-solution
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
In this thesis, a predictive analytical and numerical modeling approach for the orthogonal cutting process is proposed to calculate temperature distributions and subsequently, forces and stress distributions. The models proposed include a constitutive model for the material being cut based on the work of Weber, a model for the shear plane based on Merchants model, a model describing the contribution of friction based on Zorev’s approach, a model for the effect of wear on the tool based on the work of Waldorf, and a thermal model based on the works of Komanduri and Hou, with a fraction heat partition for a non-uniform distribution of the heat in the interfaces, but extended to encompass a set of contributions to the global temperature rise of chip, tool and work piece. The models proposed in this work, try to avoid from experimental based values or expressions, and simplifying assumptions or suppositions, as much as possible. On a thermo-physical point of view, the results were affected not only by the mechanical or cutting parameters chosen, but also by their coupling effects, instead of the simplifying way of modeling which is to contemplate only the direct effect of the variation of a parameter. The implementation of these models was performed using the MATLAB environment. Since it was possible to find in the literature all the parameters for AISI 1045 and AISI O2, these materials were used to run the simulations in order to avoid arbitrary assumption.
Resumo:
Seismic events are a major factor to consider in structural design of buildings in many countries. With the purpose of saving lives, most of the design codes lead to structural solutions that withstand large seismic actions without collapsing, but without taking into account a possible usage of the structures after the earthquake. As a result, it is necessary to consider the time needed to repair/retrofit the damaged structures (i.e. the downtime) since this period of inactivity may result in huge financial implications for the occupants of the buildings. In order to minimise the damages and simplify repair operations, structural solutions with rocking systems and negligible residual displacements have been developed during the last two decades. Systems with precast concrete rocking walls were studied with the aim of investigat- ing suitable and convenient structural alternatives to minimise the damage in case of an earthquake. Experimental, numerical and analytical analyses on post-tensioned solutions, with and without energy dissipation devices, were carried out in this research. The energy dissipation devices were made from steel angles that were further developed during the research. Different solutions for these devices were experimentally tested under cyclic loading and the results are presented. Numerical and analytical work on steel angles was also carried out. Regarding the concrete rocking wall systems, two concrete rocking wall systems were studied: post-tensioned walls and post-tensioned walls with energy dissipation devices. In the latter, the solution was to fix them externally to the wall, allowing their easy replacement after an earthquake. It is shown that the dissipaters are a viable solution for use in precast concrete rocking wall systems. A building case study is presented. The comparison between a traditional monolithic system and a hybrid solution was carried out, allowing the evaluation of the efficiency of the solution that was developed.
Resumo:
Fundação para a Ciência e a Tecnologia - SFRH/BD/27914/2006
Resumo:
Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.
Resumo:
One of today's biggest concerns is the increase of energetic needs, especially in the developed countries. Among various clean energies, wind energy is one of the technologies that assume greater importance on the sustainable development of humanity. Despite wind turbines had been developed and studied over the years, there are phenomena that haven't been yet fully understood. This work studies the soil-structure interaction that occurs on a wind turbine's foundation composed by a group of piles that is under dynamic loads caused by wind. This problem assumes special importance when the foundation is implemented on locations where safety criteria are very demanding, like the case of a foundation mounted on a dike. To the phenomenon of interaction between two piles and the soil between them it's given the name of pile-soil-pile interaction. It is known that such behavior is frequency dependent, and therefore, on this work evaluation of relevant frequencies for the intended analysis is held. During the development of this thesis, two methods were selected in order to assess pile-soil-pile interaction, being one of analytical nature and the other of numerical origin. The analytical solution was recently developed and its called Generalized pile-soil-pile theory, while for the numerical method the commercial nite element software PLAXIS 3D was used. A study of applicability of the numerical method is also done comparing the given solution by the nite element methods with a rigorous solution widely accepted by the majority of the authors.
Resumo:
The Corporate world is becoming more and more competitive. This leads organisations to adapt to this reality, by adopting more efficient processes, which result in a decrease in cost as well as an increase of product quality. One of these processes consists in making proposals to clients, which necessarily include a cost estimation of the project. This estimation is the main focus of this project. In particular, one of the goals is to evaluate which estimation models fit the Altran Portugal software factory the most, the organization where the fieldwork of this thesis will be carried out. There is no broad agreement about which is the type of estimation model more suitable to be used in software projects. Concerning contexts where there is plenty of objective information available to be used as input to an estimation model, model-based methods usually yield better results than the expert judgment. However, what happens more frequently is not having this volume and quality of information, which has a negative impact in the model-based methods performance, favouring the usage of expert judgement. In practice, most organisations use expert judgment, making themselves dependent on the expert. A common problem found is that the performance of the expert’s estimation depends on his previous experience with identical projects. This means that when new types of projects arrive, the estimation will have an unpredictable accuracy. Moreover, different experts will make different estimates, based on their individual experience. As a result, the company will not directly attain a continuous growing knowledge about how the estimate should be carried. Estimation models depend on the input information collected from previous projects, the size of the project database and the resources available. Altran currently does not store the input information from previous projects in a systematic way. It has a small project database and a team of experts. Our work is targeted to companies that operate in similar contexts. We start by gathering information from the organisation in order to identify which estimation approaches can be applied considering the organization’s context. A gap analysis is used to understand what type of information the company would have to collect so that other approaches would become available. Based on our assessment, in our opinion, expert judgment is the most adequate approach for Altran Portugal, in the current context. We analysed past development and evolution projects from Altran Portugal and assessed their estimates. This resulted in the identification of common estimation deviations, errors, and patterns, which lead to the proposal of metrics to help estimators produce estimates leveraging past projects quantitative and qualitative information in a convenient way. This dissertation aims to contribute to more realistic estimates, by identifying shortcomings in the current estimation process and supporting the self-improvement of the process, by gathering as much relevant information as possible from each finished project.
Resumo:
Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.
Resumo:
Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/64337/2009 ; projects PTDC/ECM/70652/2006, PTDC/ECM/117660/2010 and RECI/ECM-HID/0371/2012
Resumo:
The evolution of mobile technologies that make its presence something ubiquitous and the idea of internet connectivity in every device, often called as the Internet of Things, are pushing a disruption in other industry: the in-vehicle infotainment (IVI). Many companies are trying to enter this new industry that comprises information (weather, news, location services) and entertainment solutions in just one. For that purpose, company X developed a new entertainment solution and intends to bring it to market. This Work Project focuses on creating a business model and an entry mode for the company.
Resumo:
The main purpose of the present dissertation is the simulation of the response of fibre grout strengthened RC panels when subjected to blast effects using the Applied Element Method, in order to validate and verify its applicability. Therefore, four experimental models, three of which were strengthened with a cement-based grout, each reinforced by one type of steel reinforcement, were tested against blast effects. After the calibration of the experimental set-up, it was possible to obtain and compare the response to the blast effects of the model without strengthening (reference model), and a fibre grout strengthened RC panel (strengthened model). Afterwards, a numerical model of the reference model was created in the commercial software Extreme Loading for Structures, which is based on the Applied Element Method, and calibrated to the obtained experimental results, namely to the residual displacement obtained by the experimental monitoring system. With the calibration verified, it is possible to assume that the numerical model correctly predicts the response of fibre grout RC panels when subjected to blast effects. In order to verify this assumption, the strengthened model was modelled and subjected to the blast effects of the corresponding experimental set-up. The comparison between the residual and maximum displacements and the bottom surface’s cracking obtained in the experimental and the numerical tests yields a difference of 4 % for the maximum displacements of the reference model, and a difference of 4 and 10 % for the residual and maximum displacements of the strengthened model, respectively. Additionally, the cracking on the bottom surface of the models was similar in both methods. Therefore, one can conclude that the Applied ElementMethod can correctly predict and simulate the response of fibre grout strengthened RC panels when subjected to blast effects.
Resumo:
To find sustainable solutions for the production of energy, it is necessary to create photovoltaic technologies that make every photon count. To pursue this necessity, in the present work photodetectors of zinc oxide embedded with nano-structured materials, that significantly raise the conversion of solar energy to electric energy, were developed. The novelty of this work is on the development of processing methodologies in which all steps are in solution: quantum dots synthesis, passivation of their surface and sol-gel deposition. The quantum dot solutions with different capping agents were characterized by UVvisible absorption spectroscopy, spectrofluorimetry, dynamic light scattering and transmission electron microscopy. The obtained quantum dots have dimensions between 2 and 3nm. These particles were suspended in zinc acetate solutions and used to produce doped zinc oxide films with embedded quantum dots, whose electric response was tested. The produced nano-structured zinc oxide materials have a superior performance than the bulk, in terms of the produced photo-current. This indicates that an intermediate band material should have been produced that acts as a photovoltaic medium for solar cells. The results are currently being compiled in a scientific article, that is being prepared for possible submission to Energy and Environmental Science or Nanoscale journals.
Resumo:
Analytical, numerical and experimental models have been developed over time to try to characterize and understand the metal cutting process by chip removal. A true knowledge of the cutting process by chip removal is required by the increasing production, by the quality requirements of the product and by the reduced production time, in the industries in which it is employed. In this thesis an experimental setup is developed to evaluate the forces and the temperature distribution in the tool according to the orthogonal cutting model conditions, in order to evaluate its performance and its possible adoption in future works. The experimental setup is developed in a CNC lathe and uses an orthogonal cutting configuration, in which thin discs fixed onto a mandrel are cut by the cutting insert. In this experimental setup, the forces are measured by a piezoelectric dynamometer while temperatures are measured by thermocouples placed juxtaposed to the side face of the cutting insert. Three different solutions are implemented and evaluated for the thermocouples attachment in the cutting insert: thermocouples embedded in thermal paste, thermocouples embedded in copper plate and thermocouples brazed in the cutting insert. From the tests performed in the experimental setup it is concluded that the adopted forces measurement technique shows a good performance. Regarding to the adopted temperatures measurement techniques, only the thermocouples brazed in the cutting insert solution shows a good performance for temperature measurement. The remaining solutions show contact problems between the thermocouple and the side face of the cutting insert, especially when the vibration phenomenon intensifies during the cut. It is concluded that the experimental setup does not present a sufficiently robust and reliable performance, and that it can only be used in future work after making improvements in the assembly of the thermocouples.
Resumo:
Hypertonic solutions have been studied extensively in the treatment of hypovolemic shock, both in experimental and clinical models. Safety, efficacy, and long-term effects on animals and patients have been evaluated. The present article reviews indications, safety, mortality rates, and outcome in patients with hemorrhagic hypovolemic shock who were treated after admission with a hypertonic/hyperoncotic solution under strict observation in the emergency room.