917 resultados para Numerical Algorithms and Problems
Resumo:
For a typical transonic turbine rotor blade, designed for use with coolant ejection, the trailing edge, or base loss is three to four times the profile boundary layer loss. The base region of such a profile is dominated by viscous effects and it seems essential to attack the problem of loss prediction by solving the compressible Navier-Stokes equations. However, such an approach is inevitably compromised by both numerical accuracy and turbulence modelling constraints. This paper describes a Navier-Stokes solver written for 2D blade-blade flows and employing a simple two-layer mixing length eddy viscosity model. Then, measured and predicted losses and base pressures are presented for two transonic rotor blades and attempts are made to assess the capabilities of the Navier-Stokes solver and to outline areas for future work.
Resumo:
Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
A review of aphid parasitoids in China with special emphasis on their production, utilization, and conservation is presented with a brief history of Chinese biological control. Twenty genera, 99 species of Aphidiidae and two genera, 11 species of Aphelinidae were recorded in China. Each parasitoid is listed with a brief description of aphids, host plants, areas of study such as taxonomy, biology, bionomics, geographic distribution, rearing, and literature citations. Achievements, status, and problems in aphid parasitoid production, utilization, conservation, and future prospects are detailed for dominant aphid parasitoids such as Aphidius gifuensis Ashmead, A. ervi Haliday and Aphelinus mali Haldeman. Finally, opportunities and challenges of commercialization commercialization of natural enemies, especially aphid parasitoids, in China, are analyzed and discussed.
Resumo:
The effects of random surface roughness on slip flow and heat transfer in microbearings are investigated. A three-dimensional random surface roughness model characterized by fractal geometry is used to describe the multiscale self-affine roughness, which is represented by the modified two-variable Weierstrass- Mandelbrot (W-M) functions, at micro-scale. Based on this fractal characterization, the roles of rarefaction and roughness on the thermal and flow properties in microbearings are predicted and evaluated using numerical analyses and simulations. The results show that the boundary conditions of velocity slip and temperature jump depend not only on the Knudsen number but also on the surface roughness. It is found that the effects of the gas rarefaction and surface roughness on flow behavior and heat transfer in the microbearing are strongly coupled. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. In addition, the effects of temperature difference and relative roughness on the heat transfer in the bearing are also analyzed and discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents stochastic implicit coupling method intended for use in Monte-Carlo (MC) based reactor analysis systems that include burnup and thermal hydraulic (TH) feedbacks. Both feedbacks are essential for accurate modeling of advanced reactor designs and analyses of associated fuel cycles. In particular, we investigate the effect of different burnup-TH coupling schemes on the numerical stability and accuracy of coupled MC calculations. First, we present the beginning of time step method which is the most commonly used. The accuracy of this method depends on the time step length and it is only conditionally stable. This work demonstrates that even for relatively short time steps, this method can be numerically unstable. Namely, the spatial distribution of neutronic and thermal hydraulic parameters, such as nuclide densities and temperatures, exhibit oscillatory behavior. To address the numerical stability issue, new implicit stochastic methods are proposed. The methods solve the depletion and TH problems simultaneously and use under-relaxation to speed up convergence. These methods are numerically stable and accurate even for relatively large time steps and require less computation time than the existing methods. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the dependency of electrostatic interaction forces on applied potentials in electrostatic force microscopy (EFM) as well as in related local potentiometry techniques such as Kelvin probe microscopy (KPM). The approximated expression of electrostatic interaction between two conductors, usually employed in EFM and KPM, may loose its validity when probe-sample distance is not very small, as often realized when realistic nanostructured systems with complex topography are investigated. In such conditions, electrostatic interaction does not depend solely on the potential difference between probe and sample, but instead it may depend on the bias applied to each conductor. For instance, electrostatic force can change from repulsive to attractive for certain ranges of applied potentials and probe-sample distances, and this fact cannot be accounted for by approximated models. We propose a general capacitance model, even applicable to more than two conductors, considering values of potentials applied to each of the conductors to determine the resulting forces and force gradients, being able to account for the above phenomenon as well as to describe interactions at larger distances. Results from numerical simulations and experiments on metal stripe electrodes and semiconductor nanowires supporting such scenario in typical regimes of EFM investigations are presented, evidencing the importance of a more rigorous modeling for EFM data interpretation. Furthermore, physical meaning of Kelvin potential as used in KPM applications can also be clarified by means of the reported formalism. © 2009 American Institute of Physics.
Resumo:
A generalized theory for the viscoelastic behavior of idealized bituminous mixtures (asphalts) is presented. The mathematical model incorporates strain rate and temperature dependency as well as nonmonotonic loading and unloading with shape recovery. The stiffening effect of the aggregate is included. The model is of phenomenological nature. It can be calibrated using a relatively limited set of experimental parameters, obtainable by uniaxial tests. It is shown that the mathematical model can be represented as a special nonlinear form of the Burgers model. This facilitates the derivation of numerical algorithms for solving the constitutive equations. A numerical scheme is implemented in a user material subroutine (UMAT) in the finite-element analysis (FEA) code ABAQUS. Simulation results are compared with uniaxial and indentation tests on an idealized asphalt mix. © 2014 American Society of Civil Engineers.
Resumo:
High performance InGaAsP/InGaAsP strained compensated multiple-quantum-well (MQW) electroabsorption modulators (EAM) monolithically integrated with a DFB laser diode have been designed and realized by ultra low metal-organic vapor phase epitaxy (MOVPE) based on a novel butt joint scheme. The optimization thickness of upper SCH layer for DFB and EAM was obtained of the proposed MQW structure of the EAM through numerical simulation and experiment. The device containing 250(mu m) DFB and 170(mu m) EAM shows good material quality and exhibits a threshold current of 17mA, an extinction ratio of higher than 30 dB and a very high modulation efficiency (12dB/V) from 0V to 1V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.30 pF corresponding to a 3dB bandwidth more than 20GHz.
Resumo:
The State Key Laboratory of Computer Science (SKLCS) is committed to basic research in computer science and software engineering. The research topics of the laboratory include: concurrency theory, theory and algorithms for real-time systems, formal specifications based on context-free grammars, semantics of programming languages, model checking, automated reasoning, logic programming, software testing, software process improvement, middleware technology, parallel algorithms and parallel software, computer graphics and human-computer interaction. This paper describes these topics in some detail and summarizes some results obtained in recent years.
Resumo:
NP难是计算机科学中的一个重要概念和核心问题,自从它的提出到现在, 人们已经得到了很多重要的理论结果。直观上讲,一个问题一旦被证明是NP难 的就意味着我们很难找到该问题的一个多项式时间的有效算法。但从实用的角 度讲,对于应用中遇到的问题,单单是证明它很难(是NP难的)是不够的,如何 在合理的时间内求解实际问题也是必须解决的现实问题。本文主要侧重于NP难 问题的算法和实验性研究,研究对象主要是可满足性问题、图的顶点染色、图 的子图匹配等NP难问题,以及可满足性模理论的解空间计算和体积估算等扩展 问题。 围绕几个著名的问题,本文的主要工作如下: 针对图染色问题,日本研究人员提出了一种通过组合小图单元得到大的难 实例的方法。他们通过试错的方式手工找到了7个小图单元。我们提出了一种新 的构造算法来系统地生成这类小图单元,用我们的算法生成的难图染色实例, 主流的图染色工具需要指数时间才能求解;在一些专门求解色数比较小的图的 图染色工具上我们的算法生成的实例更难求解。针对皇后图染色问题,我们利 用模型查找工具SEM来对这类问题进行求解,在求解过程中提出了新的变量选 择策略,发现比简单地使用可满足性问题工具和图染色工具效果要好。 针对语义Web推理中的关键问题RDF蕴含关系的判定问题,我们利用从子 图同构问题到可满足性问题的编码方案,把它转化为命题逻辑公式的可满足性 判定问题,并采用了启发式的方法对编码过程进行必要的化简得到较少的布尔 公式,然后再利用高效的可满足性问题工具来求解。这种转化为可满足性问题 的方法,是跟RDF简单蕴含的模型论语义结合比较自然的一个方法。在小规模 实例上,这种方法的效果也很好。 针对布尔和数值混合约束的公式,即可满足性模理论(线性理论)公式的 体积计算这一新问题,我们首先给出一个直接计算体积的方法,然后提出一个 改进的算法,并研究了如何通过引入可满足性模理论中的技术来尝试对该算法 进一步地改进。我们实现了工具并做了实验。在一个实际的程序实例上,我们 还就“热门路径”问题做了实例研究和探讨。 体积计算是一个有广泛应用背景的经典难题(#P难的),但以前的方法要 么只能处理线性约束,要么只具有理论价值(不够实用);针对含非线性约束的 体积计算问题我们提出了实用的算法,并设计了相应的工具,在低维实例有很 好的逼近效果。
Resumo:
Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles. spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for beta-barium borate OPCPA with type-1 noncollinear angularly dispersed geometry. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A rapid algorithm for phase and amplitude reconstruction from a single spatial-carrier interferogram is proposed by bringing a phase-shifting mechanism into reconstruction of a carrier-frequency interferogram. The algorithm reconstructs phase through directly obtaining and integrating its real-value derivatives, avoiding a phase unwrapping process. The proposed method is rapid and easy to implement and is made insensitive to the profile of the interferogram boundaries by choosing a suitable integrating path. Moreover, the algorithm can also be used to reconstruct the amplitude of the object wave expediently without retrieving the phase profile in advance. The feasibility of this algorithm is demonstrated by both numerical simulation and experiment. (c) 2008 Optical Society of America.
Resumo:
Small-angle multiple intrabeam scattering (IBS) is an important effect for heavy-ion storage rings with electron cooling, because the cooling time is determined by the equilibrium between cooling and IBS process. All usually used numerical algorithms of IBS growth rate calculations are based on the model of the collisions proposed by A.Piwinski, but this result is a multidimensional integral. In this paper, the IBS growth rates are simulated for HIRFL-CSR using symmetric elliptic integral method, and compared with several available IBS code results.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.