816 resultados para Non-alcoholic Fatty Liver Disease
Resumo:
Central nervous system aspergillosis is an often fatal complication of invasive Aspergillus infection. Relevant disease models are needed to study the pathophysiology of cerebral aspergillosis and to develop novel therapeutic approaches. This study presents a model of central nervous system aspergillosis that mimics important aspects of human disease. Eleven-day-old non-immunosuppressed male Wistar rats were infected by an intracisternal injection of 10 mul of a conidial suspension of Aspergillus fumigatus. An inoculum of 7.18 log(10) colony-forming units (CFU) consistently produced cerebral infection and resulted in death of all animals (n = 25) within 3-10 days. Median survival time was 3 days. Histomorphologically, all animals developed intracerebral abscesses (2-26 per brain) containing abundant fungal hyphae and neutrophils. Fungal culture of cortical homogenates yielded maximal growth on day 3 after infection (5.4 log(10) CFU/g, n = 15) that declined over time. Galactomannan concentrations in cortical homogenates, assessed as an index for hyphal burden, peaked on days 3-5. Fungal infection spread to peripheral organs in 83% of animals. Fungal burden in lung, liver, spleen and kidney was two orders of magnitude lower than in the brain. The successful establishment of a model of cerebral aspergillosis in a non-immunosuppressed host provides the opportunity to investigate mechanisms of disease and to develop novel treatment regimens for this commonly fatal infection.
Resumo:
BACKGROUND: In patients with coronary artery disease (CAD), a well grown collateral circulation has been shown to be important. The aim of this prospective study using peripheral blood monocytes was to identify marker genes for an extensively grown coronary collateral circulation. METHODS: Collateral flow index (CFI) was obtained invasively by angioplasty pressure sensor guidewire in 160 individuals (110 patients with CAD, and 50 individuals without CAD). RNA was extracted from monocytes followed by microarray-based gene-expression analysis. 76 selected genes were analysed by real-time polymerase chain reaction (PCR). A receiver operating characteristics analysis based on differential gene expression was then performed to separate individuals with poor (CFI<0.21) and well-developed collaterals (CFI>or=0.21) Thereafter, the influence of the chemokine MCP-1 on the expression of six selected genes was tested by PCR. RESULTS: The expression of 203 genes significantly correlated with CFI (p = 0.000002-0.00267) in patients with CAD and 56 genes in individuals without CAD (p = 00079-0.0430). Biological pathway analysis revealed 76 of those genes belonging to four different pathways: angiogenesis, integrin-, platelet-derived growth factor-, and transforming growth factor beta-signalling. Three genes in each subgroup differentiated with high specificity among individuals with low and high CFI (>or=0.21). Two out of these genes showed pronounced differential expression between the two groups after cell stimulation with MCP-1. CONCLUSIONS: Genetic factors play a role in the formation and the preformation of the coronary collateral circulation. Gene expression analysis in peripheral blood monocytes can be used for non-invasive differentiation between individuals with poorly and with well grown collaterals. MCP-1 can influence the arteriogenic potential of monocytes.
Resumo:
PRINCIPLES: Cardiogoniometry is a non-invasive technique for quantitative three-dimensional vectorial analysis of myocardial depolarization and repolarization. We describe a method of surface electrophysiological cardiac assessment using cardiogoniometry performed at rest to detect variables helpful in identifying coronary artery disease. METHODS: Cardiogoniometry was performed in 793 patients prior to diagnostic coronary angiography. Using 13 variables in men and 10 in women, values from 461 patients were retrospectively analyzed to obtain a diagnostic score that would identify patients having coronary artery disease. This score was then prospectively validated on 332 patients. RESULTS: Cardiogoniometry showed a prospective diagnostic sensitivity of 64%, and a specificity of 82%. ECG diagnostic sensitivity was significantly lower, with 53% and a similar specificity of 75%. CONCLUSIONS: Cardiogoniometry is a new, noninvasive, quantitative electrodiagnostic technique which is helpful in identifying patients with coronary artery disease. It can easily be performed at rest and delivers an accurate, automated diagnostic score.
Resumo:
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Resumo:
BACKGROUND: Elderly individuals who provide care to a spouse suffering from dementia bear an increased risk of coronary heart disease (CHD). OBJECTIVE: To test the hypothesis that the Framingham CHD Risk Score would be higher in dementia caregivers relative to non-caregiving controls. METHODS: We investigated 64 caregivers providing in-home care for their spouse with Alzheimer's disease and 41 gender-matched non-caregiving controls. All subjects (mean age 70 +/- 8 years, 75% women, 93% Caucasian) had a negative history of CHD and cerebrovascular disease. The original Framingham CHD Risk Score was computed adding up categorical scores for age, blood lipids, blood pressure, diabetes, and smoking with adjustment made for sex. RESULTS: The average CHD risk score was higher in caregivers than in controls even when co-varying for socioeconomic status, health habits, medication, and psychological distress (8.0 +/- 2.9 vs. 6.3 +/- 3.0 points, p = 0.013). The difference showed a medium effect size (Cohen's d = 0.57). A relatively higher blood pressure in caregivers than in controls made the greatest contribution to this difference. The probability (area under the receiver operator curve) that a randomly selected caregiver had a greater CHD risk score than a randomly selected non-caregiver was 65.5%. CONCLUSIONS: Based on the Framingham CHD Risk Score, the potential to develop overt CHD in the following 10 years was predicted to be greater in dementia caregivers than in non-caregiving controls. The magnitude of the difference in the CHD risk between caregivers and controls appears to be clinically relevant. Clinicians may want to monitor caregiving status as a routine part of standard evaluation of their elderly patients' cardiovascular risk.
Resumo:
End stage renal disease is a major complication after orthotopic liver transplantation (OLT). Vasoconstriction of renal arterial vessels because of calcineurin inhibitor (CNI) treatment plays a pivotal role in the development of renal insufficiency following OLT. Renal resistance can be measured non-invasively by determining the resistance index (RI) of segmental arteries by color-coded duplex ultrasonography, a measure with predictive value for future renal failure. Sixteen OLT patients on long-term CNI therapy were recruited prospectively and randomly assigned either to receive the m-TOR inhibitor sirolimus (SRL) or to continue on CNI treatment, and were followed for one yr. Serum creatinine (crea) declined after conversion to SRL, whereas it tended to increase in patients remaining on CNI (meanDelta crea SRL: -27, -18, -18, -15 micromol/L; meanDelta crea CNI: 4, 5, 8, 11 micromol/L at 1, 3, 6, 12 months, p = 0.02). RI improved after switching to SRL and was lower on SRL than on CNI (meanDeltaRI SRL: -0.04, -0.04, -0.03, -0.03; meanDeltaRI CNI: -0.006, 0.004, -0.007, -0.01 after 1, 3, 6, 12 months, p = 0.016). Individual changes of RI correlated significantly with individual changes of crea (r = 0.54, p < 0.001). Conversion from CNI to SRL can ameliorate renal function accompanied by a reduction of intrarenal RI after OLT.
Resumo:
INTRODUCTION: Functional dyspepsia and non-erosive reflux disease (NERD) are prevalent gastrointestinal conditions with accumulating evidence regarding an overlap between the two. Still, patients with NERD represent a very heterogeneous group and limited data on dyspeptic symptoms in various subgroups of NERD are available. AIM: To evaluate the prevalence of dyspeptic symptoms in patients with NERD subclassified by using 24 h impedance-pH monitoring (MII-pH). METHODS: Patients with typical reflux symptoms and normal endoscopy underwent impedance-pH monitoring off proton pump inhibitor treatment. Oesophageal acid exposure time (AET), type of acid and non-acid reflux episodes, and symptom association probability (SAP) were calculated. A validated dyspepsia questionnaire was used to quantify dyspeptic symptoms prior to reflux monitoring. RESULTS: Of 200 patients with NERD (105 female; median age, 48 years), 81 (41%) had an abnormal oesophageal AET (NERD pH-POS), 65 (32%) had normal oesophageal AET and positive SAP for acid and/or non-acid reflux (hypersensitive oesophagus), and 54 (27%) had normal oesophageal AET and negative SAP (functional heartburn). Patients with functional heartburn had more frequent (p<0.01) postprandial fullness, bloating, early satiety and nausea compared to patients with NERD pH-POS and hypersensitive oesophagus. CONCLUSION: The increased prevalence of dyspeptic symptoms in patients with functional heartburn reinforces the concept that functional gastrointestinal disorders extend beyond the boundaries suggested by the anatomical location of symptoms. This should be regarded as a further argument to test patients with symptoms of gastro-oesophageal reflux disease in order to separate patients with functional heartburn from patients with NERD in whom symptoms are associated with gastro-oesophageal reflux.
Resumo:
The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepaticparasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analogue 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.
Resumo:
BACKGROUND AND AIMS Liver stiffness is increasingly used in the non-invasive evaluation of chronic liver diseases. Liver stiffness correlates with hepatic venous pressure gradient (HVPG) in patients with cirrhosis and holds prognostic value in this population. Hence, accuracy in its measurement is needed. Several factors independent of fibrosis influence liver stiffness, but there is insufficient information on whether meal ingestion modifies liver stiffness in cirrhosis. We investigated the changes in liver stiffness occurring after the ingestion of a liquid standard test meal in this population. METHODS In 19 patients with cirrhosis and esophageal varices (9 alcoholic, 9 HCV-related, 1 NASH; Child score 6.9±1.8), liver stiffness (transient elastography), portal blood flow (PBF) and hepatic artery blood flow (HABF) (Doppler-Ultrasound) were measured before and 30 minutes after receiving a standard mixed liquid meal. In 10 the HVPG changes were also measured. RESULTS Post-prandial hyperemia was accompanied by a marked increase in liver stiffness (+27±33%; p<0.0001). Changes in liver stiffness did not correlate with PBF changes, but directly correlated with HABF changes (r = 0.658; p = 0.002). After the meal, those patients showing a decrease in HABF (n = 13) had a less marked increase of liver stiffness as compared to patients in whom HABF increased (n = 6; +12±21% vs. +62±29%,p<0.0001). As expected, post-prandial hyperemia was associated with an increase in HVPG (n = 10; +26±13%, p = 0.003), but changes in liver stiffness did not correlate with HVPG changes. CONCLUSIONS Liver stiffness increases markedly after a liquid test meal in patients with cirrhosis, suggesting that its measurement should be performed in standardized fasting conditions. The hepatic artery buffer response appears an important factor modulating postprandial changes of liver stiffness. The post-prandial increase in HVPG cannot be predicted by changes in liver stiffness.
Resumo:
An adult dog that lived in central British Columbia was examined because of a history of lethargy and vomiting. Histology, immunohistochemistry, and polymerase chain reaction (PCR) examination of a hepatic mass confirmed the presence of an alveolar hydatid cyst, the first description of Echinococcus multilocularis in British Columbia. We provide recommendations for case management and remind practitioners in endemic areas of western Canada that dogs can serve as definitive and, rarely, intermediate hosts for E. multilocularis.
Resumo:
The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.
Resumo:
Background. Of the over five million annual pediatric visits to U.S. emergency departments, one-third to one-half are for non-emergent conditions. Minorities are more likely to utilize the emergency department (ED) for non-emergent conditions. Very little research has analyzed the role of illness type, perceived need, or family preferences in explaining this disparity. ^ Objectives. This study examined racial-ethnic differences in preferences for care among non-emergent users of the ED. ^ Research design. A random selection of pediatric non-emergent ED users within a single CHIP managed care plan were surveyed regarding attitudes and health care preferences. Preferences for ED utilization were analyzed by racial-ethnic category, controlling for illness type, child and guardian age, education level, language, and perceived need. ^ Results. A total of 250 families were surveyed. Most respondents reported having a regular doctor, satisfaction with their physician, and ready access to their physician. Fifteen percent of White, 39% of Hispanic, and 38% of Black families reported they preferred the emergency department for ill care. In multivariate analysis, Whites families were significantly less likely to prefer the emergency department for ill visits (odds ratio, 0.12; 95% confidence interval 0.03-0.55) compared to Blacks and Hispanics. ^ Conclusions. Racial-ethnic disparities in non-emergent ED utilization may be partially explained by different preferences for care. ^ Key words: children, emergency department, preferences for care, disparities ^
Resumo:
Background. Cancer cachexia is a common syndrome complex in cancer, occurring in nearly 80% of patients with advanced cancer and responsible for at least 20% of all cancer deaths. Cachexia is due to increased resting energy expenditure, increased production of inflammatory mediators, and changes in lipid and protein metabolism. Non-steroidal anti-inflammatory drugs (NSAIDs), by virtue of their anti-inflammatory properties, are possibly protective against cancer-related cachexia. Since cachexia is also associated with increased hospitalizations, this outcome may also show improvement with NSAID exposure. ^ Design. In this retrospective study, computerized records from 700 non-small cell lung cancer patients (NSCLC) were reviewed, and 487 (69.57%) were included in the final analyses. Exclusion criteria were severe chronic obstructive pulmonary disease, significant peripheral edema, class III or IV congestive heart failure, liver failure, other reasons for weight loss, or use of research or anabolic medications. Information on medication history, body weight and hospitalizations was collected from one year pre-diagnosis until three years post-diagnosis. Exposure to NSAIDs was defined if a patient had a history of being treated with NSAIDs for at least 50% of any given year in the observation period. We used t-test and chi-square tests for statistical analyses. ^ Results. Neither the proportion of patients with cachexia (p=0.27) nor the number of hospitalizations (p=0.74) differed among those with a history of NSAID use (n=92) and those without (n=395). ^ Conclusions. In this study, NSAID exposure was not significantly associated with weight loss or hospital admissions in patients with NSCLC. Further studies may be needed to confirm these observations.^
Resumo:
Ulmus minor es una especie arbórea originaria de Europa cuyas poblaciones han sido diezmadas por el hongo patógeno causante de la enfermedad de la grafiosis. La conservación de los olmos exige plantearse su propagación a través de plantaciones y conocer mejor su ecología y biología. Ulmus minor es un árbol de ribera, pero frecuentemente se encuentra alejado del cauce de arroyos y ríos, donde la capa freática sufre fuertes oscilaciones. Por ello, nuestra hipótesis general es que esta especie es moderadamente resistente tanto a la inundación como a la sequía. El principal objetivo de esta tesis doctoral es entender desde un punto de vista funcional la respuesta de U. minor a la inundación, la sequía y la infección por O. novo-ulmi; los factores que posiblemente más influyen en la distribución actual de U. minor. Con este objetivo se persigue dar continuidad a los esfuerzos de conservación de esta especie que desde hace años se dedican en varios centros de investigación a nivel mundial, ya que, entender mejor los mecanismos que contribuyen a la resistencia de U. minor ante la inoculación con O. novo-ulmi y factores de estrés abiótico ayudará en la selección y propagación de genotipos resistentes a la grafiosis. Se han planteado tres experimentos en este sentido. Primero, se ha comparado la tolerancia de brinzales de U. minor y U. laevis – otro olmo ibérico – a una inmersión controlada con el fin de evaluar su tolerancia a la inundación y comprender los mecanismos de aclimatación. Segundo, se ha comparado la tolerancia de brinzales de U. minor y Quercus ilex – una especie típica de ambientes Mediterránea secos – a la falta de agua en el suelo con el fin de evaluar el grado de tolerancia y los mecanismos de aclimatación a la sequía. El hecho de comparar dos especies contrastadas responde al interés en entender mejor cuales son los procesos que conducen a la muerte de una planta en condiciones de sequía – asunto sobre el que hay una interesante discusión desde hace algunos años. En tercer lugar, con el fin de entender mejor la resistencia de algunos genotipos de U. minor a la grafiosis, se han estudiado las diferencias fisiológicas y químicas constitutivas e inducidas por O. novo-ulmi entre clones de U. minor seleccionados a priori por su variable grado de resistencia a esta enfermedad. En el primer experimento se observó que los brinzales de U. minor sobrevivieron 60 días inmersos en una piscina con agua no estancada hasta una altura de 2-3 cm por encima del cuello de la raíz. A los 60 días, los brinzales de U. laevis se sacaron de la piscina y, a lo largo de las siguientes semanas, fueron capaces de recuperar las funciones fisiológicas que habían sido alteradas anteriormente. La conductividad hidráulica de las raíces y la tasa de asimilación de CO2 neta disminuyeron en ambas especies. Por el contrario, la tasa de respiración de hojas, tallos y raíces aumentó en las primeras semanas de la inundación, posiblemente en relación al aumento de energía necesario para desarrollar mecanismos de aclimatación a la inundación, como la hipertrofia de las lenticelas que se observó en ambas especies. Por ello, el desequilibrio del balance de carbono de la planta podría ser un factor relevante en la mortalidad de las plantas ante inundaciones prolongadas. Las plantas de U. minor (cultivadas en envases de 16 litros a media sombra) sobrevivieron por un prolongado periodo de tiempo en verano sin riego; la mitad de las plantas murieron tras 90 días sin riego. El cierre de los estomas y la pérdida de hojas contribuyeron a ralentizar las pérdidas de agua y tolerar la sequía en U. minor. Las obvias diferencias en tolerancia a la sequía con respecto a Q. ilex se reflejaron en la distinta capacidad para ralentizar la aparición del estrés hídrico tras dejar de regar y para transportar agua en condiciones de elevada tensión en el xilema. Más relevante es que las plantas con evidentes síntomas de decaimiento previo a su muerte exhibieron pérdidas de conductividad hidráulica en las raíces del 80% en ambas especies, mientras que las reservas de carbohidratos apenas variaron y lo hicieron de forma desigual en ambas especies. Árboles de U. minor de 5 y 6 años de edad (plantados en eras con riego mantenido) exhibieron una respuesta a la inoculación con O. novo-ulmi consistente con ensayos previos de resistencia. La conductividad hidráulica del tallo, el potencial hídrico foliar y la tasa de asimilación de CO2 neta disminuyeron significativamente en relación a árboles inoculados con agua, pero solo en los clones susceptibles. Este hecho enlaza con el perfil químico “más defensivo” de los clones resistentes, es decir, con los mayores niveles de suberina, ácidos grasos y compuestos fenólicos en estos clones que en los susceptibles. Ello podría restringir la propagación del hongo en el árbol y preservar el comportamiento fisiológico de los clones resistentes al inocularlos con el patógeno. Los datos indican una respuesta fisiológica común de U. minor a la inundación, la sequía y la infección por O. novo-ulmi: pérdida de conductividad hidráulica, estrés hídrico y pérdida de ganancia neta de carbono. Pese a ello, U. minor desarrolla varios mecanismos que le confieren una capacidad moderada para vivir en suelos temporalmente anegados o secos. Por otro lado, el perfil químico es un factor relevante en la resistencia de ciertos genotipos a la grafiosis. Futuros estudios deberían examinar como este perfil químico y la resistencia a la grafiosis se ven alteradas por el estrés abiótico. ABSTRACT Ulmus minor is a native European elm species whose populations have been decimated by the Dutch elm disease (DED). An active conservation of this species requires large-scale plantations and a better understanding of its biology and ecology. U. minor generally grows close to water channels. However, of the Iberian riparian tree species, U. minor is the one that spread farther away from rivers and streams. For these reasons, we hypothesize that this species is moderately tolerant to both flooding and drought stresses. The main aim of the present PhD thesis is to better understand the functional response of U. minor to the abiotic stresses – flooding and drought – and the biotic stress – DED – that can be most influential on its distribution. The overarching goal is to aid in the conservation of this emblematic species through a better understanding of the mechanisms that contribute to resistance to abiotic and biotic stresses; an information that can help in the selection of resistant genotypes and their expansion in large-scale plantations. To this end, three experiments were set up. First, we compared the tolerance to experimental immersion between seedlings of U. minor and U. laevis – another European riparian elm species – in order to assess their degree of tolerance and understand the mechanisms of acclimation to this stress. Second, we investigated the tolerance to drought of U. minor seedlings in comparison with Quercus ilex (an oak species typical of dry Mediterranean habitats). Besides assessing and understanding U. minor tolerance to drought at the seedling stage, the aim was to shed light into the functional alterations that trigger drought-induced plant mortality – a matter of controversy in the last years. Third, we studied constitutive and induced physiological and biochemical differences among clones of variable DED resistance, before and following inoculation with Ophiostoma novo-ulmi. The goal is to shed light into the factors of DED resistance that is evident in some genotypes of U. minor, but not others. Potted seedlings of U. minor survived for 60 days immersed in a pool with running water to approximately 2-3 cm above the stem collar. By this time, U. minor seedlings died, whereas U. laevis seedlings moved out of the pool were able to recover most physiological functions that had been altered by flooding. For example, root hydraulic conductivity and leaf photosynthetic CO2 uptake decreased in both species; while respiration initially increased with flooding in leaves, stems and roots possibly to respond to energy demands associated to mechanisms of acclimation to soil oxygen deficiency; as example, a remarkable hypertrophy of lenticels was soon observed in flooded seedlings of both species. Therefore, the inability to maintain a positive carbon balance somehow compromises seedling survival under flooding, earlier in U. minor than U. laevis, partly explaining their differential habitats. Potted seedlings of U. minor survived for a remarkable long time without irrigation – half of plants dying only after 90 days of no irrigation in conditions of high vapour pressure deficit typical of summer. Some mechanisms that contributed to tolerate drought were leaf shedding and stomata closure, which reduced water loss and the risk of xylem cavitation. Obviously, U. minor was less tolerant to drought than Q. ilex, differences in drought tolerance resulting mostly from the distinct capacity to postpone water stress and conduct water under high xylem tension among species. More relevant was that plants of both species exhibited similar symptoms of root hydraulic failure (i.e. approximately 80% loss of hydraulic conductivity), but a slight and variable depletion of non-structural carbohydrate reserves preceding dieback. Five- and six-year-old trees of U. minor (planted in the field with supplementary watering) belonging to clones of contrasted susceptibility to DED exhibited a different physiological response to inoculation with O. novo-ulmi. Stem hydraulic conductivity, leaf water potential and photosynthetic CO2 uptake decreased significantly relative to control trees inoculated with water only in DED susceptible clones. This is consistent with the “more defensive” chemical profile observed in resistant clones, i.e. with higher levels of saturated hydrocarbons (suberin and fatty acids) and phenolic compounds than in susceptible clones. These compounds could restrict the spread of O. novo-ulmi and contribute to preserving the near-normal physiological function of resistant trees when exposed to the pathogen. These results evidence common physiological responses of U. minor to flooding, drought and pathogen infection leading to xylem water disruption, leaf water stress and reduced net carbon gain. Still, seedlings of U. minor develop various mechanisms of acclimation to abiotic stresses that can play a role in surviving moderate periods of flood and drought. The chemical profile appears to be an important factor for the resistance of some genotypes of U. minor to DED. How abiotic stresses such as flooding and drought affect the capacity of resistant U. minor clones to face O. novo-ulmi is a key question that must be contemplated in future research.