787 resultados para Nitride Films
Resumo:
We report on the formation of Langmuir films of 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphine,hereafter named tetrapyridyl porphyrins with distinct central ions (2H(+), Zn(2+), Cu(2+), Ni(2+)). The films were characterized with surface pressure and surface potential isotherms and in situ UV-vis absorbance. The measurements indicated strong aggregation of porphyrin monomers at the air-water interface, with a red shift of the Soret band in comparison with the spectrum obtained from CHCl(3) solutions. The shift was larger for the non-substituted H(2)TPyP, and depended on the metal ion. Significantly, aggregation occurred right after spreading of the Langmuir film, with on further shifts in the UV-vis spectra upon compression of the film, or even after transferring them onto solid substrates in the form of Langmuir-Blodgett (LB) films. The buildup of LB films from H(2)TPyP and ZnTPyP was monitored with UV-vis spectroscopy, indicating an equal amount of material deposited in each deposition step. Using FTIR in the transmission and reflection modes, we inferred that the H(2)TPyP molecules exhibit no preferential orientation in the LB films, while for ZnTPyP there is preferential orientation, with the porphyrin molecules anchored to the substrate by the lateral pyridyl groups. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The control of molecular architectures has been a key factor for the use of Langmuir-Blodgett (LB) films in biosensors, especially because biomolecules can be immobilized with preserved activity. In this paper we investigated the incorporation of tyrosinase (Tyr) in mixed Langmuir films of arachidic acid (AA) and a lutetium bisphthalocyanine (LuPc2), which is confirmed by a large expansion in the surface pressure isotherm. These mixed films of AA-LuPc2 + Tyr could be transferred onto ITO and Pt electrodes as indicated by FTIR and electrochemical measurements, and there was no need for crosslinking of the enzyme molecules to preserve their activity. Significantly, the activity of the immobilised Tyr was considerably higher than in previous work in the literature, which allowed Tyr-containing LB films to be used as highly sensitive voltammetric sensors to detect pyrogallol. Linear responses have been found up to 400 mu M, with a detection limit of 4.87 x 10(-2) mu M (n = 4) and a sensitivity of 1.54 mu A mu M-1 cm(-2). In addition, the Hill coefficient (h = 1.27) indicates cooperation with LuPc2 that also acts as a catalyst. The enhanced performance of the LB-based biosensor resulted therefore from a preserved activity of Tyr combined with the catalytic activity of LuPc2, in a strategy that can be extended to other enzymes and analytes upon varying the LB film architecture.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)