932 resultados para Neutron powder diffraction (NPD)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ignition behaviour of boron powder, prepared through electrowinning process, was studied by using thermogravimetry coupled with simultaneous differential thermal analysis (TG-SDTA). The dependence of the inception of the ignition reaction on the partial pressure of oxygen, particle size of the boron powder and heating rate was investigated. It was observed that all these factors affect the ignition temperature. Boron powder with a mean particle size of about 10 mu m was found to be susceptible to ignition in oxygen even at 783K. In general, the susceptibility to ignition was found to vary inversely with the degree of crystallinity. Presence of carbon was found to retard the oxidation of boron and raise the ignition temperature. These results are useful in safe handling and storage of finely divided boron powder and in the subsequent production of boron carbide from it. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium sulphate (CaSO4) pseudomicrorods have been synthesized by alow-temperature hydrothermal method using CaSO4 powder as a precursor and hexadecylamine as a surfactant at 180 degrees C for at different intervals of time. The powder X-ray diffraction pattern indicates that the as-formed pseudomicrorods are of orthorhombic phase with lattice parameters a = 7.0023(4) angstrom, b = 6.9939(5) angstrom and c = 6.2434(4) angstrom. Scanning electron microscopy images show that the pseudomicrorods have diameters of about 0.2-2.5 mm and lengths of about 2-10 mm. Fourier transform infrared spectroscopy shows a strong doublet near 609 and 681 cm(-1) arising from nu(4) (SO42) bending vibrations. The strongest band observed at 1132 cm(-1) is associated with nu(3) (SO42-) stretching vibrations. The band near 420-450 cm(-1) is attributed to nu(2) (SO42-) bending vibrations. The Raman spectrum exhibits an intense peak at 1008 cm(-1) associated with the SO42- mode. The photoluminescence spectrum exhibits UV bands (330, 350 nm), strong green bands (402, 436 nm) and weak blue bands (503 nm). A widening of the optical band gap was observed as the particle size decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the Tevatron, the total p_bar-p cross-section has been measured by CDF at 546 GeV and 1.8 TeV, and by E710/E811 at 1.8 TeV. The two results at 1.8 TeV disagree by 2.6 standard deviations, introducing big uncertainties into extrapolations to higher energies. At the LHC, the TOTEM collaboration is preparing to resolve the ambiguity by measuring the total p-p cross-section with a precision of about 1 %. Like at the Tevatron experiments, the luminosity-independent method based on the Optical Theorem will be used. The Tevatron experiments have also performed a vast range of studies about soft and hard diffractive events, partly with antiproton tagging by Roman Pots, partly with rapidity gap tagging. At the LHC, the combined CMS/TOTEM experiments will carry out their diffractive programme with an unprecedented rapidity coverage and Roman Pot spectrometers on both sides of the interaction point. The physics menu comprises detailed studies of soft diffractive differential cross-sections, diffractive structure functions, rapidity gap survival and exclusive central production by Double Pomeron Exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime.Activation energy is in the order E-a(n-pentane)>E-a(isopentane)>E-a(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen thatD(n pentane)>D(isopentane)>D(neopentane) and E-a(n-pentane)< E-a(isopentane)< E-a(neopentane). Intermediate scattering function for small wavenumbers obtained from MD follows a single exponential decay for neopentane and isopentane. For n-pentane, a single exponential fit provides a poor fit especially at short times. Cage residence time is largest for n-pentane and lowest for neopentane. For neopentane, the width of the self-part of the dynamic structure factor shows a near monotonic decrease with wavenumber. For n-pentane a minimum is seen near k=0.5 A degrees(-1) suggesting a slowing down of motion around the 12-ring window, the bottleneck for diffusion. Finally, the result that the branched isomer has a higher diffusivity as compared with the linear analog is at variation from what is normally seen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infra-red and Raman spectra of ordinary and deuterated barium chloride dihydrate have been studied to throw light on the intramolecular hydrogen bonds in these two crystals. The frequencies of the stretching, bending and librational modes observed in infra-red and Raman spectra exclude the possibility of at least one of the OH.... Cl hydrogen bonds, contrary to the results of NMR and neutron diffraction studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A correlation of the structural data on IS hydrates obtained by x-ray diffraction, neutron diffraction, and proton magnetic resonance reveals that when a water molecule is hydrogen bonded into a crystal structure and the angle subtended at the donor water oxygen by the acceptor atoms deviates from the vapor H-O-H angle, bent hydrogen bonds are formed in preference to distortion of the H-O-H angle. Theoretical justification for this result is obtained from energy considerations by calculating the energy of formation of bent hydrogen bonds on the basis of the Lippincott-Schroeder potential function model for the hydrogen bond and the energy of deformation of the H-O-H angle from spectroscopic force constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of methyl azide has been studied by the sector-microphotometer and the sector-visual methods of electron diffraction and the parameters determined as follows: C-N = 1.47 ± 0.02 Å., N1-N2 = 1.24 ± 0.01 Å., N2-N3 = 1.12 ± 0.01 Å. and

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of trichloroacetonitrile has been studied by electron diffraction by the visual interpretation of sectored photographs. These parameters were obtained: C-N = 1.165 ± 0.025, C-C = 1.465 ± 0.025, C-Cl = 1.765 ± 0.01 A., and < CCCl = 109.5 ± 1°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an investigation of the structure and dielectric properties of MM'O-4 and MTiM'O-6 rutile-type oxides for M = Cr, Fe, Ga and M' = Nb. Ta and Sb. All the oxides adopt a disordered rutile structure (P4(2)/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies While both the MM'O-4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM'O-6 oxides for M = Fe, Cr and M' = Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500K (C) 2010 Elsevier Inc All rights reserved