994 resultados para Neogene vulcanism
Resumo:
The oxygen isotope record of the planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma from Pliocene and early Pleistocene sediments at both DSDP site 173 and the Centerville Beach section in California suggests a large influx of isotopically light water in this area during late Pliocene and early Pleistocene time. Salinity may have been reduced by as much as 2 to 4 ?. Surface sea water paleotemperatures for the lower Pliocene range from 9.5°C to 15.5°C. The oxygen isotope record of the benthonic genus Uvigerina shows little variation indicating environmental stability at depth. At DSDP site 173 the small variation in Uvigerina is due to variation in the oxygen isotopic composition of the oceans as glaciers waxed and waned. At the Centerville Beach section the oxygen isotopic composition of Uvigerina reflects the gradual shoaling of the Humboldt Basin. Carbon and oxygen isotope ratios in G. bulloides and N. pachyderma are inversely correlated at the 95% confidence level. This may indicate that the oxygen and carbon isotopic composition of foraminifera are influenced by the same factors. On the other hand, the inverse correlation may be due to metabolic fractionation. No correlation was found between oxygen and carbon isotopic composition in Uvigerina.
Resumo:
The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.
Resumo:
Clay mineral assemblages for the last 10 m.y. are described for Site 823, at 16°S in the Queensland Trough, to the northeast of Australia. Largely unaffected by diagenetic influences, these mostly express the evolution of northeastern Australian continental environments during the late Neogene: (1) beginning during the late Miocene at about 7.0 Ma is an increase of illite derived from rocky substrates at the expense of smectite from deeply weathered soils; this increase was the result of increasing aridity in the Australian interior and globally cooler temperatures, associated with increases in Antarctic glaciation; (2) concomitant and further increases of kaolinite fluxes to the Queensland Trough during the late Miocene-early Pliocene largely reflect an increase in rainfall in northeastern Australia; (3) increases in both soil- and rock-derived minerals probably intensified as a result of late Neogene uplift of the eastern highlands; (4) clay-mineral associations during the Pliocene and Pleistocene display minor variations only and probably resulted in part from differential settling and sea-level changes; (5) similar trends of clay-mineral variations occur at both ODP Site 823 and DSDP Site 588 (Lord Howe Rise). Less abundant kaolinite relative to illite at Site 588 nevertheless suggests a southward decrease of continental humidity and/or of the eastern highlands uplift; (6) influences of global climate and oceanic and atmospheric circulations on clay-mineral associations dominated during the late Miocene and were progressively replaced by influences of more regional environmental variations during the Pliocene and especially the Pleistocene.
Resumo:
Planktonic foraminifers from Ocean Drilling Program Leg 182, Holes 1126B and 1126C, 1128B and 1128C, 1130A and 1130B, 1132B, and 1134A and 1134B confirm the neritic record that during the early Miocene the Great Australian Bight region was in a cool-temperate regime with abundant Globoturborotalita woodi. Warm marine environments started to develop in the later part of the early Miocene, and the region became warm temperate to subtropical in the early middle Miocene with abundant Globigerinoides, Orbulina, and Globorotalia, corresponding to global warming at the Miocene climatic optimum. Fluctuations between cool- and warm-temperate conditions prevailed during the late Miocene, as indicated by abundant Globoconella conoidea and Menardella spp. A major change in planktonic foraminiferal assemblages close to the Miocene/Pliocene boundary not only drove many Miocene species into extinction but also brought about such new species as Globorotalia crassaformis and Globoconella puncticulata. Warm-temperate environments continued into the early and mid-Pliocene before being replaced by cooler conditions, supporting numerous Globoconella inflata and Globigerina quinqueloba. Based on data from this study and published results from the Australia-New Zealand region, we established a local planktonic foraminifer zonation scheme for separating the southern Australian Neogene (SAN) into Zones SAN1 to SAN19 characterizing the Miocene and Zones SAN20 to SAN25 characterizing the Pliocene. The Neogene sections from the Great Australian Bight are bounded by hiatuses of ~0.5 to >3 m.y. in duration, although poor core recovery in some holes obscured a proper biostratigraphic resolution. A total of 15 hiatuses, numbered 1 to 15, were identified as synchronous events from the base of the Miocene to the lower part of the Pleistocene. We believe that these are local manifestations of major third-order boundaries at about (1) 23.8, (2) 22.3, (3) 20.5, (4) 18.7, (5) 16.4, (6) 14.8, (7) 13.5, (8) 11.5, (9) 9.3, (10) 7.0, (11) 6.0, (12) 4.5, (13) 3.5, (14) 2.5, and (15) 1.5 Ma, respectively. This hiatus-bounded Neogene succession samples regional transgressions and stages of southern Australia and reveals its stepwise evolutionary history.
Resumo:
Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the epsilon-Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2- epsilon-Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe-Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples. The new epsilon-Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the epsilon-Nd and delta13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published delta13C gradients. Where the epsilon-Nd record differs from the nutrient-based records, changes in the pre-formed delta13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5-4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.
Resumo:
Glauconites and phosphates have been detected in almost all investigated samples at Sites 798 (uppermost Miocene or lower Pliocene to Pleistocene) and 799 (early middle Miocene to Pleistocene). Autochthonous occurrences appear in very minor quantities (generally below 0.2%) throughout the drilled sequences, whereas allochthonous accumulations are limited to the lower Pliocene or uppermost Miocene sequence at Site 798 (glauconites) and to the upper and middle Miocene sequence at Site 799 (upper and middle Miocene: glauconites; middle Miocene: phosphates). X-ray fluorescence, microprobe, and bulk chemical analyses indicate high variabilities in cations and anions and generally low oxide totals. This is probably related to the substitution of phosphate and fluoride aniors by hydroxide and carbonate anions in phosphates and to the depletion of iron, aluminum, and potassium cations and the enrichment in hydroxide and crystal water in glauconites. Gradients in pore-water contents of dissolved phosphate and fluoride at Sites 798 and 799 suggest a depth of phosphate precipitation between 30 and 50 mbsf, with fluoride as the limiting element for phosphate precipitation at Site 798. Phosphate and fluoride appear to be balanced at Site 799. Crude extrapolations indicate that the Japan-Sea sediments may have taken up approximately 7.2*10**10 g P total/yr during the Neogene and Pleistocene. This amount corresponds to approximately 0.3% of the estimated present-day global transfer of phosphorus into the sediments and suggests that the Japan Sea constitutes an average sink for this element. The two main carriers of phosphorus into the present Japan Sea are the Tshushima and the Liman currents, importing approximately 6.6*10**10 g P and 5.7*10**10 g P per year, respectively. Bulk chemical analyses suggest that at least 36% of P total in the sediments is organically bound phosphorus. This rather high value, which corresponds to the measured Japan-Sea deep-water P organic/P total ratios, probably reflects rapid transport of organic phosphorus into the depth of the Japan Sea.
Resumo:
Five species of Bolboforma have been found in middle Eocene to lower Oligocene sediments from Maud Rise, Weddel Sea, Antarctica (Leg 113, Holes 689B and 690B), the first reported Bolboforma from the Antarctic Paleogene. The previous oldest known occurrences of Bolboforma in the world's oceans were of late Eocene age and this study extends the known range to the middle middle Eocene (~ 44 Ma). Highest species diversity of Bolboforma in the Weddell Sea region of Antarctica occurred during the late Eocene, after which all but one important species disappeared before the Eocene/Oligocene boundary (36.5 Ma). The remaining species, B. irregularis, disappeared soon after, during the earliest Oligocene. The disappearance of Bolboforma in this region of Antarctica coincided with significant climatic cooling that occurred at the end of the Eocene and during the earliest Oligocene, when subpolar replaced temperate conditions. Bolboforma is not known from younger sediments in the Antarctic except for a brief interval during the late early Miocene, an interval of Neogene climatic warmth. The presence of Bolboforma in Eocene to lower Oligocene sequences in the Weddell Sea region of Antarctica is therefore consistent with this taxon's previously recognized association with temperate water masses. Bolboforma is of limited biostratigraphic value at present, because of relatively long stratigraphic ranges and diachronous extinctions. Previous suggestions that Bolboforma represents an encystment stage of phytoplankton require further critical study because the deposition, in large numbers, at paleodepths up to 2250 m in the open ocean, is an unlikely strategy for an encystment phase of a phytoplanktonic organism. A new species, Bolboforma antarctica, is described, exhibiting a stratigraphic range from middle middle Eocene to the upper Eocene (~ 44 to 39 Ma).
Resumo:
Magnetostratigraphic studies of Paleogene sediments piston-cored on Maud Rise, Weddell Sea (ODP Sites 689 and 690), are a cornerstone of Southern Ocean Paleogene and Neogene chronostratigraphy. However, parts of previous magnetostratigraphic interpretations have been called into question, and recent reinvestigation of the upper Paleocene-middle Eocene portion of Site 690 suggested that the records might be contaminated by spurious magnetizations, which raises doubts about the reliability of these important records. We undertook a high-resolution magnetostratigraphic study of Eocene-Oligocene u-channel samples from ODP Holes 689B, 689D, 690B, and 690C in order to address these concerns. A pervasive overprint appears to be present below the middle Eocene, which compromises magnetobiostratigraphic interpretations for the upper Cretaceous and lower Paleogene. Nevertheless, our new results provide a robust record of geomagnetic field behavior from 38.5 to 25 Ma and confirm the reliability of these sediments for calibration of biostratigraphic datum events during a crucial phase of earth history when major Antarctic ice sheets developed. Also, comparison of magnetozone thicknesses in multiple holes at the same site indicates that ~1.2-1.8 m of the stratigraphic record is missing at each core break, which corresponds to time breaks of 120-360 k.y. Lack of a continuous record within a single hole renders useless spectral analyses for investigating long geomagnetic and paleoclimatic time series. This observation reinforces the need for coring of multiple offset holes to obtain continuous paleoceanographic records. Sedimentary hiatuses have been identified only at the deeper of the two investigated sites (Site 690), which could mark a local response to the onset of the Antarctic Circumpolar Current.