955 resultados para Nd-doped material
Resumo:
Ga1-xMnxSb crystals are grown with different Mn doping concentrations by the horizontal Bridgman method (x = 0 - 0.04). Optical absorption and photoluminescence studies are carried out in the temperature range 3-300 K. Optical absorption studies reveal that the inter-valence band transition from the spin-orbit split-off band to the light/heavy hole bands is dominant over the fundamental valence band to conduction band absorption. In higher doped crystals, the fundamental absorption peak is merged with the inter-valence band transition and could not be resolved. Photoluminescence measurements in heavily doped crystals reveal the band gap narrowing and band filling effects due to the Fermi level shifting into the valence band.
Resumo:
Among the various cathode materials studied for Li-ion batteries over the past many years, spinet LiMn2O4 is found to be one of the most attractive materials. Nanoparticles of the electrode materials sustain high rate capability due to large surface to volume ratio and small diffusion path length. Nanoparticles of spinel LiMn2O4 have been synthesized by microwave hydrothermal technique using prior synthesized amorphous MnO2 and LiOH. The phase and purity of spinel LiMn2O4 are confirmed by powder X-ray diffraction. The morphological studies have been investigated using field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances of the material for Li insertion/extraction are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling and AC impedance studies. The initial discharge capacity is found to be about 89 mAh g(-1) at current density of 21 mA g(-1). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The current density-voltage (J-V) characteristics of poly(3-methylthiophene) devices show a negative differential resistance (NDR) at room temperature with a large peak to valley current ratio (similar to 507). This NDR can be tuned by two orders of magnitude by controlling the carrier density due to the variation of the space-charge region in the device. The temperature and scan rate dependent J-V measurements infer that the NDR is mainly driven by the trapping and de-trapping of carriers. The photo-generation of carriers is observed to reduce the NDR effect.
Resumo:
It has been suggested that materials with interesting and useful bulk non-linear optical properties might result by substituting vanadium, the lightest element in the group V of periodic table, for Nb or Ta atoms along with Li and three oxygens. It is with this motivation that we have been making attempts to grow single crystals of LiNbO3 doped with various concentrations of V2O5. Unfortunately the results obtained on the ceramic samples of this material have not been very encouraging, owing to their hygroscopic nature. However, our attempts to prepare both ceramic and single-crystalline samples of potassium lithium niobate (K3Li2Nb5O15; KLN) doped V2O5 were successful. In this letter we report the preliminary results concerning our studies on the effect of V2O5 doping on the structural as well as topographic features of both ceramic and single-crystalline samples of KLN.
Resumo:
We show that the characteristic Mn2+ d emission color from Mn2+-doped CdS nanocrystals can be tuned over as much as 40 nm, in contrast to what should be expected from such a nearly localized d-d transition. This is achieved surprisingly by a fine-tuning of the host particle diameter from 1.9 to 2.6 nm, thereby changing the overall emission color from red to yellow. Systematic experiments in conjunction with state-of-the-art ab initio calculations with full geometry optimization establish that Mn2+ ions residing at surface/subsurface regions have a distorted tetrahedral coordination resulting in a larger ligand field splitting. Consequently, these near-surface Mn2+ species exhibit a lower Mn2+ d emission energy, compared to those residing at the core of the nanocrystal with an undisturbed tetrahedral coordination. The origin of the tunability of the observed Mn2+ emission is the variation of emission contributions arising from Mn2+ doped at the core, subsurface, and surface of the host. Our findings provide a unique and easy method to identify the location of an emitting Mn2+ ion in the nanocrystal, which would be otherwise very difficult to decipher.
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.
Resumo:
Using dynamic TG in H2, X-ray powder diffraction and Mössbauer Spectroscopy the reactivities fot hydrogen reduction of Fe2O3 prepared at different temperatures, Fe2O3 doped with oxides of Mn, Co, Ni and Cu prepared at 300DaggerC from nitrate precursors and intermediate spinels derived from above samples during reduction have been explored. The reactivity is higher for finely divided Fe2O3 prepared at 250DaggerC. The reduction is retarded by Mn, marginally affected by Co and accelerated by Ni and Cu, especially at higher (5 at.%) dopant concentration. These reactivities confirmed also by isothermal experiments, are ascribed to the nature of disorder in the metastable intermediate spinels and to hydrogen rsquospill overrsquo effects.
Resumo:
The conductivity of highly doped polypyrrole is less than that of intermediately doped samples, by two orders of magnitude, at 4.2 K. This may be due to more number of bipolarons in highly doped samples. Bipolarons require four times more activation energy than single polarons to hop by thermally induced virtual transitions to intermediate dissociated polaron states than by the nondissociated process. The conduction process in these polyconjugated systems involve ionization from deep trapped states, having a View the MathML source dependence, hopping from localised states, having View the MathML source dependence, and intersite tunnel percolation, having T−1 dependence. The interplay of these factors leads to a better fit by View the MathML source. The mechanism for this exponential behaviour need not be same as that of Motts variable range hopping. Conduction by percolation is possible, if an infinite cluster of chains can be connected by impurity centers created by dopant ions. The tendency for the saturation of conductivity at very low temperatures is due to the possibility of intersite tunnel percolation is disordered polaronic systems.
Resumo:
X-ray and ultraviolet photoelectron spectroscopy have been employed to investigate the high temperature metal-insulator transitions in V2O3 and (V0.99Cr0.01)2O3. The high temperature transitions are associated with more gradual changes in the 3d bands compared to the low-temperature transitions
Resumo:
We report the rapid solution combustion synthesis and characterization of Ag-substituted LaMnO3 phases at relatively low temperature using oxalyl dihydrazide, as fuel. Structural parameters were refined by the Rietveld method using powder X-ray diffraction data. While the parent LaMnO3 crystallizes in the orthorhombic structure, the Ag-substituted compounds crystallize in the rhombohedral symmetry. On increasing Ag-content, unit cell volume and Mn-O-Mn bond angle decreases. The Fourier transform infra red spectrum shows two absorption bands corresponding to Mn-O stretching vibration (v(s) mode) and Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions x = 0.0, 0.05 and 0.10, respectively. Electrical resistivity measurements reveal that composition-controlled metal to insulator transition, with the maximum metal to insulator being 280 K for the composition La0.75Ag0.25MnO3. Increase in magnetic moment was observed with increase in Ag-content. The maximum magnetic moment of 35 emu/g was observed for the composition La0.80Ag0.20MnO3. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine.
Resumo:
A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.
Resumo:
The electrical resistance of the critical binary liquid system C6H12+(CH3CO)2O is measured both in the pure form and when the system is doped with small amounts (≈ 100 ppm) of H2O impurities. Near Tc, the resistance varies as dR/dT = A1+A2 (T-Tc)-b with b ≈ 0.35. Neither the critical exponent b nor the amplitude ratio A1/A2 are affected by the impurities. A sign reversal of dR/dT is noticed at high temperatures T much greater-than Tc.
Resumo:
In the present study, titanium nitride which shows exceptional stability, extreme corrosion resistance, good electronic conductivity and adhesion behaviour is used to support platinum particles and then used for methanol oxidation in an alkaline medium. The catalyst shows very good CO tolerance for the electrochemical oxidation of methanol. In situ infrared spectroelectrochemical data show the remarkable ability of TiN to decompose water at low over potentials leading to -OH type functional groups on its surface which in turn help in alleviating the carbon monoxide poisoning associated with methanol oxidation. TiN supported catalysts are found to be very good in terms of long term stability, exchange current density and stable currents at low over voltages. Supporting evidence from X-ray photoelectron spectroscopic data and cyclic voltammetry clearly demonstrates the usefulness of TiN supported Pt catalysts for efficient methanol oxidation in alkaline media.