978 resultados para Natural-gas Storage
Resumo:
After several inquiries from the trucking industry, the Department of Revenue established the conversion factors for compressed natural gas and liquefied natural gas in August, 2014. This advisory opinion now represents the Department’s official position concerning these conversion factors. The Department also recently established the conversion factor for liquefied propane gas. This advisory now represents the Department’s official position concerning this conversion factor.
Resumo:
Os betões autocompactáveis (BAC) são betões que se definem pela capacidade de fluir no interior das cofragens, preenchendo-as e envolvendo as armaduras só por acção do seu próprio peso, sem bloqueio dos agregados e mantendo-se homogéneo em todo o seu volume. As adições activas do tipo II nomeadamente as cinzas volantes, utilizadas na fabricação do BAC irão escassear no futuro pelo facto de provirem da queima do carvão da qual resulta uma quantidade elevada de C02. Para minimizar estas emissões, o carvão começa a ser substituído por gás natural. Mas, como o BAC necessita duma grande quantidade de finos, há necessidade de encontrar outros subprodutos que a substituam. Tendo em conta o que atrás se afirma introduziram-se na fabricação do BAC resíduos de pedreira do Alentejo, identificaram-se as suas características no estado fresco e no estado endurecido. Este estudo teve também em conta o factor económico da sua produção. /ABSTRACT: Self-Compacting (SCC) is concrete which may be defined by the ability to flow inside the formwork, filling them and involving the reinforcements only by action of its own weight, without blocking and maintaining uniformity throughout its volume. Type II additions, as fly ash, are used in the manufacture of SCC. The supply of fly ash in the future will be difficult because they come from the burning of coal resulting in a high amount of C02. To minimize these emissions, coal is being replaced by natural gas. But, as the BAC requires a large amount of fine materials, the formulation of SCC requires other fine products. Having this in mind, the use of waste from Alentejo quarries in concrete was tested. The characteristics of SCC with waste material were identified in fresh and hardened state. This study also took into account the economic factor of production.
Resumo:
In this paper, we measure the degree of fractional integration in final energy demand in Portugal using an ARFIMA model with and without adjustments for seasonality. We consider aggregate energy demand as well as final demand for petroleum, electricity, coal, and natural gas. Our findings suggest the presence of long memory in all of the components of energy demand. All fractional-difference parameters are positive and lower than 0.5 indicating that the series are stationary, although with mean reversion patterns slower than in the typical short-run processes. These results have important implications for the design of energy policies. As a result of the long-memory in final energy demand, the effects of temporary policy shocks will tend to disappear slowly. This means that even transitory shocks have long lasting effects. Given the temporary nature of these effects, however, permanent effects on final energy demand require permanent policies. This is unlike what would be suggested by the more standard, but much more limited, unit root approach, which would incorrectly indicate that even transitory policies would have permanent effects
Resumo:
This doctorate focused on the development of dense polymeric membranes for carbon capture, mostly in post combustion applications, and for natural gas sweetening. The work was supported by the European Project NANOMEMC2 funded under H2020 program. Different materials have been investigated, that rely on two main transport mechanisms: the solution-diffusion and the facilitated transport. In both cases, proper nano-fillers have been added to the matrix, in order to boost the mechanical and permselective properties of the membranes. Facilitated transport membranes were based on the use of was polyvinylamine (PVAm), as main matrix with fixed-site carriers, and L-Arginine as mobile carrier; the filler, used mostly as reinforcer, was carboxymethylated nanocellulose (cNFC). Humid test showed interesting results, and especially the blend made of PVAm/cNFC/Arg in weight ratio 27,5/27,5/45 crossed the Robeson CO2/N2 upper bound, representing current state of the art membranes, with a CO2 permeability of 271 Barrer and CO2/N2 selectivity of 70. Solution diffusion membranes were based on Pebax®2533 matrix which was added with three different graphene oxide (GO)-based materials, namely pristine GO, Porous Graphene Oxide (PGO) and a GO functionalized with polyetheramine (PEAGO). All of them provided a modest but clear increment of permeability of the Pebax matrix, from plus 2% (GO) to plus 8% (PGO), with no change in selectivity. The gas tested with this type of composites were CO2 and N2, for Post combustion capture applications. Pebax®2533 was also chemically modified, obtaining the product called “Benzoyl-P2533”, that was fully characterized, and tested in term of permeation using five gas: CO2, N2, CH4, O2, and He. Modified material showed an increment of the overall permeability of the material of a fair 10% for all gases tested, apart from helium, that increased of almost 50%.
Resumo:
The innovation in several industrial sectors has been recently characterized by the need for reducing the operative temperature either for economic or environmental related aspects. Promising technological solutions require the acquisition of fundamental-based knowledge to produce safe and robust systems. In this sense, reactive systems often represent the bottleneck. For these reasons, this work was focused on the integration of chemical (i.e., detailed kinetic mechanism) and physical (i.e., computational fluid dynamics) models. A theoretical-based kinetic mechanism mimicking the behaviour of oxygenated fuels and their intermediates under oxidative conditions in a wide range of temperature and pressure was developed. Its validity was tested against experimental data collected in this work by using the heat flux burner, as well as measurements retrieved from the current literature. Besides, estimations deriving from existing models considered as the benchmark in the combustion field were compared with the newly generated mechanism. The latter was found to be the most accurate for the investigated conditions and fuels. Most influential species and reactions on the combustion of butyl acetate were identified. The corresponding thermodynamic parameter and rate coefficients were quantified through ab initio calculations. A reduced detailed kinetic mechanism was produced and implemented in an open-source computational fluid dynamics model to characterize pool fires caused by the accidental release of aviation fuel and liquefied natural gas, at first. Eventually, partial oxidation processes involving light alkenes were optimized following the quick, fair, and smoot (QFS) paradigm. The proposed procedure represents a comprehensive and multidisciplinary approach for the construction and validation of accurate models, allowing for the characterization of developing industrial sectors and techniques.
Resumo:
The aim of the Ph.D. research project was to explore Dual Fuel combustion and hybridization. Natural gas-diesel Dual Fuel combustion was experimentally investigated on a 4-Stroke, 2.8 L, turbocharged, light-duty Diesel engine, considering four operating points in the range between low to medium-high loads at 3000 rpm. Then, a numerical analysis was carried out using a customized version of the KIVA-3V code, in order to optimize the diesel injection strategy of the highest investigated load. A second KIVA-3V model was used to analyse the interchangeability between natural gas and biogas on an intermediate operating point. Since natural gas-diesel Dual Fuel combustion suffers from poor combustion efficiency at low loads, the effects of hydrogen enriched natural gas on Dual Fuel combustion were investigated using a validated Ansys Forte model, followed by an optimization of the diesel injection strategy and a sensitivity analysis to the swirl ratio, on the lowest investigated load. Since one of the main issues of Low Temperature Combustion engines is the low power density, 2-Stroke engines, thanks to the double frequency compared to 4-Stroke engines, may be more suitable to operate in Dual Fuel mode. Therefore, the application of gasoline-diesel Dual Fuel combustion to a modern 2-Stroke Diesel engine was analysed, starting from the investigation of gasoline injection and mixture formation. As far as hybridization is concerned, a MATLAB-Simulink model was built to compare a conventional (combustion) and a parallel-hybrid powertrain applied to a Formula SAE race car.
Resumo:
The pursuit of decarbonization and increased efficiency in internal combustion engines (ICE) is crucial for reducing pollution in the mobility sector. While electrification is a long-term goal, ICE still has a role to play if coupled with innovative technologies. This research project explores various solutions to enhance ICE efficiency and reduce emissions, including Low Temperature Combustion (LTC), Dual fuel combustion with diesel and natural gas, and hydrogen integration. LTC methods like Dual fuel and Reactivity Controlled Compression Ignition (RCCI) show promise in lowering emissions such as NOx, soot, and CO2. Dual fuel Diesel-Natural Gas with hydrogen addition demonstrates improved efficiency, especially at low loads. RCCI Diesel-Gasoline engines offer increased Brake Thermal Efficiency (BTE) compared to standard diesel engines while reducing specific NOx emissions. The study compares 2-Stroke and 4-Stroke engine layouts, optimizing scavenging systems for both aircraft and vehicle applications. CFD analysis enhances specific power output while addressing injection challenges to prevent exhaust short circuits. Additionally, piston bowl shape optimization in Diesel engines running on Dual fuel (Diesel-Biogas) aims to reduce NOx emissions and enhance thermal efficiency. Unconventional 2-Stroke architectures, such as reverse loop scavenged with valves for high-performance cars, opposed piston engines for electricity generation, and small loop scavenged engines for scooters, are also explored. These innovations, alongside ultra-lean hydrogen combustion, offer diverse pathways toward achieving climate neutrality in the transport sector.
Resumo:
This thesis aims to understand the behavior of a low-rise unreinforced masonry building (URM), the typical residential house in the Netherlands, when subjected to low-intensity earthquakes. In fact, in the last decades, the Groningen region was hit by several shallow earthquakes caused by the extraction of natural gas. In particular, the focus is addressed to the internal non-structural walls and to their interaction with the structural parts of the building. A simple and cost-efficient 2D FEM model is developed, focused on the interfaces representing mortar layers that are present between the non-structural walls and the rest of the structure. As a reference for geometries and materials, it has been taken into consideration a prototype that was built in full-scale at the EUCENTRE laboratory of Pavia (Italy). Firstly, a quasi-static analysis is performed by gradually applying a prescribed displacement on the roof floor of the structure. Sensitivity analyses are conducted on some key parameters characterizing mortar. This analysis allows for the calibration of their values and the evaluation of the reliability of the model. Successively, a transient analysis is performed to effectively subject the model to a seismic action and hence also evaluate the mechanical response of the building over time. Moreover, it was possible to compare the results of this analysis with the displacements recorded in the experimental tests by creating a model representing the entire considered structure. As a result, some conditions for the model calibration are defined. The reliability of the model is then confirmed by both the reasonable results obtained from the sensitivity analysis and the compatibility of the values obtained for the top displacement of the roof floor of the experimental test, and the same value acquired from the structural model.
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.
Resumo:
The effect of Isabel (IGE) and Niagara (NGE) grape seed and peel extracts on lipid oxidation, instrumental colour, pH and sensory properties of raw and cooked processed chicken meat stored at -18 degrees C for nine months was evaluated. The pH of raw and cooked samples was not affected by the addition of grape extracts. IGE and NGE were effective in inhibiting the lipid oxidation of raw and cooked chicken meat, with results comparable to synthetic antioxidants. The extracts caused alterations in colour, as evidenced by the instrumental (darkening and lower intensity of red and yellow colour) and sensory results of cooked samples. In the sensory evaluation of odour and flavour, IGE produced satisfactory results, which did not differ from synthetic antioxidants. These findings suggest that the ICE and NGE are effective in retarding lipid oxidation of raw and cooked chicken meat during frozen storage. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The effect of butylated hydroxytoluene/butylated hydroxyanisole blend (BHT/BHA), and rosemary and oregano extracts, added individually or in combination, on lipid oxidation and fatty acid composition was investigated on irradiated frozen beef burgers. Irradiation treatment was carried out using a (60)CO semi-industrial irradiator at doses of 6, 7 and 8 kGy, and then the treated meat samples were stored at -20 degrees C for 90 days. Lipid oxidation and fatty acid composition of beef samples were evaluated by measurement of TBARS and gas chromatography, respectively. The results of the experiment showed that rosemary extract, applied alone and in combination with either BHT/BHA or oregano extracts was more effective in maintaining a low oxidation level in the samples compared to oregano extract used individually or in combination with BHT/BHA. Results also showed no significant differences (p > 0.05) in fatty acid composition in all analyzed samples, although some changes in terms of decreased PUFA and MUFA, beside of slight increase of SFA content were observed. However, these differences do not correlate positively neither with the irradiation dose nor the type of antioxidant. Thus, there is a potential application of these spices as natural antioxidants in irradiated meats. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to assess the efficacy of rosemary and oregano extracts in avoiding oxidative changes in beef burgers, and to evaluate the fatty acid profile of these products after electron beam exposition. Extracts, individually or in combination, were added to beef burgers and compared to synthetic antioxidants commonly used in food (butylated hydroxytoluene, butylated hydroxyanisole). The ground beef were submitted to electron beam irradiation at doses of 0, 3.5 and 7 kGy, and stored for 90 days. At regular time intervals, lipid oxidation and fatty acid composition were evaluated through measurement of thiobarbituric acid-reactive substances (TBARS) and gas chromatography, respectively. The results indicate that, although the irradiation process triggers an increase in the lipid oxidation ratio expressed by TBARS values, great changes in the fatty acid profiles were not observed; instead, they continued to present characteristics very similar to that of non-irradiated beef. Thus, as irradiation doses of up to 7 kGy for frozen meat can make foods safe from foodborne pathogens, natural antioxidants derived from spices are able to reduce and avoid lipid changes that may cause a deterioration of the sensory quality of these foods, and these natural extracts offer a good choice for replacing synthetic additives.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
The effect of high pressure processing (400 MPa for 10 min) and natural antimicrobials 2 (enterocins and lactate-diacetate) on the behaviour of L. monocytogenes in sliced cooked ham 3 during refrigerated storage (1ºC and 6ºC) was assessed. The efficiency of the treatments after a 4 cold chain break was evaluated. Lactate-diacetate exerted a bacteriostatic effect against L. 5 monocytogenes during the whole storage period (3 months) at 1ºC and 6ºC, even after 6 temperature abuse. The combination of low storage temperature (1ºC), high pressure 7 processing (HPP) and addition of lactate-diacetate reduced the levels of L. monocytogenes 8 during storage by 2.7 log CFU/g. The most effective treatment was the combination of HPP, 9 enterocins and refrigeration at 1ºC, which reduced the population of the pathogen to final counts 10 of 4 MPN/g after 3 months of storage, even after the cold chain break.