890 resultados para NANOSTRUCTURED CAWO4
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel nanostructured composite, azide copper octa (3-aminopropyl)octasilsesquioxane (ASCA) was incorporated into a graphite paste electrode and the electrochemical studies were conducted with cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E ) = 0.30 V and an irreversible process at 1.1 V (vs Ag/AgCl; NaCl 1.0 mol L-1 ; v = 20 mV s-1 ). The redox couple with (E ) = 0.30V presents an electrocatalytic response for determination of ascorbic acid. The modified electrode gives a linear range from 1.010-4 – 1.010-3 mol L-1 (r = 0.998) for the determination of ascorbic acid with detection limit of 6.910-5 mol L-1 and standard deviation of 2.3% for n = 3 . The amperometric sensitivity was 122.1 mA/mol L-1 for ascorbic acid. The application this electrode was tested and ascorbic acid in three commercial pharmaceutical product (Cebion, Cewin and Redoxon) have been determined.
Resumo:
This work has main aim of is to propose the synthesis and characterization of nanostructured materials for oxidation of carbohydrates such as glucose, with non-enzymatic catalysis. The proposed pathway of synthesis of metal catalysts is the polyol method and techniques of physical characterization proposals for analysis of prepared catalyst pass through diffraction technique of ray-x (DRX), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy ray-x (EDX). Technical proposals for the electrochemical characterization of the synthesized catalysts are Cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The prospects of this work are compared by the catalytic activity of the sensor designed with non-enzymatic sensors and biosensors also known in the literature
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the chemical composition by energy dispersive X-ray spectrometry (EDS-X). Results. CSCM and CSCR presented larger particle sizes than MTA. Hydroxyapatite deposits were found on the surface of some materials, especially when associated with the radiopacifier with ZrO2 nanoparticles. All the cements presented calcium, silicon, and aluminum in their composition. Conclusion. Both calcium silicate-based cements presented composition and bioactivity similar to MTA when associated with the radiopacifiers evaluated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be correlated to its potent antioxidant capacity. Novel maghemite (gamma-Fe3O4) nanoparticles, characterized by a diameter of about 10 nm and possessing peculiar colloidal properties and surface interactions, called Surface Active Maghemite Nanoparticles (SAMN), were superficially modified with curcumin by simple incubation, due to the presence of under-coordinated Fe(III) atoms on nanoparticle surface. The resulting curcumin-modified SAMNs (SAMN@curcumin) were characterized by transmission electron microscopy (TEM), FTIR, Mossbauer, EPR and UV-Vis spectroscopy. The redox properties of bound curcumin were tested by electrochemistry. Finally, SAMN@curcumin was studied in the presence of different electroactive substances, namely hydroquinone, NADH and ferrocyanide, in order to assess its electrochemical behavior. Moreover, SAMN@curcumin was electrochemically tested in the presence of one of the most diffuse reactive oxygen specie, such as hydrogen peroxide, demonstrating its stability. SAMN@curcumin in which curcumin is firmly bound, but still retaining its redox features represents a feasible adduct: a magnetically drivable nano-bio-conjugate mimicking free Curcumin redox behavior. The proposed nanostructured material could be exploited as magnetic drivable curcumin vehicle for biomedical applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)