996 resultados para N-ethylmaleimide sensitive factor (NSF)
Resumo:
The enteropathogenic role of cytotoxic necrotizing factor (CNF)-producing Escherichia coli was investigated by searching cnf genes among 2074 isolates from 200 children with and 200 without acute diarrhea in Brazil. Fourteen (7%) cases versus 10 (5%) control children carried at least one cnf positive isolate (P = 0.50) and most isolates expressed CNF type 1. DNA sequences of virulence factors of extraintestinal pathogenic E. coli (ExPEC) were detected in 78.6% of CNF1-producing isolates. Besides not being associated with human acute diarrhea, the CNF1-producing isolates here identified may represent potential ExPEC transitorily composing the normal intestinal flora.
Resumo:
Samples containing highly unbalanced DNA mixtures from two individuals commonly occur both in forensic mixed stains and in peripheral blood DNA microchimerism induced by pregnancy or following organ transplant. Because of PCR amplification bias, the genetic identification of a DNA that contributes trace amounts to a mixed sample represents a tremendous challenge. This means that standard genetic markers, namely microsatellites, also referred as short tandem repeats (STR), and single-nucleotide polymorphism (SNP) have limited power in addressing common questions of forensic and medical genetics. To address this issue, we developed a molecular marker, named DIP-STR that relies on pairing deletion-insertion polymorphisms (DIP) with STR. This novel analytical approach allows for the unambiguous genotyping of a minor component in the presence of a major component, where DIP-STR genotypes of the minor were successfully procured at ratios up to 1:1,000. The compound nature of this marker generates a high level of polymorphism that is suitable for identity testing. Here, we demonstrate the power of the DIP-STR approach on an initial set of nine markers surveyed in a Swiss population. Finally, we discuss the limitations and potential applications of our new system including preliminary tests on clinical samples and estimates of their performance on simulated DNA mixtures.
Resumo:
Thymus regression upon stressing stimuli, such as infectious diseases, is followed by organ reconstitution, paralleling its development in ontogeny. A narrow window of thymus development was here studied, encompassing the pro-T lymphoid precursor expansion during specification stages, by the use of epidermal growth factor plus insulin (INS) in murine fetal thymus organ cultures. Aiming to disclose signaling pathways related to these stages, cultured thymus lobes had their RNA extracted, for the search of transcripts differentially expressed using RNAse protection assays and reverse transcriptase-polymerase chain reactions. We found no difference that could explain INS-driven thymocyte growth, in the pattern of transcripts for death/proliferation mediators, or for a series of growth factor receptors and transcriptional regulators known as essential for thymus development. Thymocyte suspensions from cultured lobes, stained for phenotype analysis by fluorescence activated cell sorting, showed a decreased staining for Notch1 protein at cell surfaces upon INS addition. We analyzed the expression of Notch-related elements, and observed the recruitment of a specific set of transcripts simultaneous and compatible with INS-driven thymocyte growth, namely, transcripts for Notch3, for its ligand Jagged2, and for Deltex1, a mediator of a poorly characterized alternative pathway downstream of the Notch receptor.
Resumo:
Tubulointerstitial inflammation is a common feature of renal diseases. We have investigated the relationship between inflammation and Na(+) transport in the collecting duct (CD) using the mCCD(cl1) and mpkCDD(cl4) principal cell models. Lipopolysaccharide (LPS) decreased basal and aldosterone-stimulated amiloride-sensitive transepithelial current in a time-dependent manner. This effect was associated with a decrease in serum and glucocorticoid-regulated kinase 1 (SGK1) mRNA and protein levels followed by a decrease in epithelial sodium channel (ENaC) alpha-subunit mRNA levels. The LPS-induced decrease in SGK1 expression was confirmed in isolated rat CD. This decreased expression of either SGK1 or the ENaC alpha-subunit was not due to enhanced degradation of mRNA. In contrast, LPS inhibited transcriptional activity of the SGK1 promoter measured by luciferase-reporter gene assay. The effect of LPS was not mediated by inhibition of mineralocorticoid or glucocorticoid receptor, because expression of both receptors was unchanged and blockade of either receptor by spironolactone or RU486, respectively, did not prevent the down-regulation of SGK1. The effect of LPS was mediated by the canonical NF-kappaB pathway, as overexpression of a constitutively active mutant, IKKbeta (inhibitor of nuclear factor kappaB kinase-beta) decreased SGK1 mRNA levels, and knockdown of p65 NF-kappaB subunit by small interfering RNA increased SGK1 mRNA levels. Chromatin immunoprecipitation showed that LPS increased p65 binding to two NF-kappaB sites along the SGK1 promoter. In conclusion, we show that activation of the NF-kappaB pathway down-regulates SGK1 expression, which might lead to decreased ENaC alpha-subunit expression, ultimately resulting in decreased Na(+) transport.
Resumo:
B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors--transmembrane activator and calcium signal--modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)--that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific "receptor." This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRIL's basic sequence. Moreover, syndecan-1-positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.
Resumo:
A ribosome association factor (AF) was isolated from the yeast Sacchharomyces cerevisiae. Partial amino acid sequence of AF was determined from its fragment of 25 kDa isolated by treating AF with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-Bromoindolenine (BNPS-skatole). This sequence has a 86% identity to the product of the single-copy S. cerevisiae STM1 gene that is apparently involved in several events like binding to quadruplex and triplex nucleic acids and participating in apoptosis, stability of telomere structures, cell cycle, and ribosomal function. Here we show that AF and Stm1p share some characteristics: both bind to quadruplex and Pu triplex DNA, associates ribosomal subunits, and are thermostable. These observations suggest that these polypeptides belong to a family of proteins that may have roles in the translation process.
Resumo:
The purpose of this study was to evaluate the factor structure and the reliability of the French versions of the Identity Style Inventory (ISI-3) and the Utrecht-Management of Identity Commitments Scale (U-MICS) in a sample of college students (N = 457, 18 to 25 years old). Confirmatory factor analyses confirmed the hypothesized three-factor solution of the ISI-3 identity styles (i.e. informational, normative, and diffuse-avoidant styles), the one-factor solution of the ISI-3 identity commitment, and the three-factor structure of the U-MICS (i.e. commitment, in-depth exploration, and reconsideration of commitment). Additionally, theoretically consistent and meaningful associations among the ISI-3, U-MICS, and Ego Identity Process Questionnaire (EIPQ) confirmed convergent validity. Overall, the results of the present study indicate that the French versions of the ISI-3 and UMICS are useful instruments for assessing identity styles and processes, and provide additional support to the cross-cultural validity of these tools.
Resumo:
RESUME La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée aux cellules reproductrices et cancéreuses. A l'inverse, les cellules somatiques normales, qui n'expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité catalytique de la télomérase, hTERT, est définie comme le facteur limitant l'activité télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l'ADN et de l'acétylation des histones, de nombreux modèles ont été suggérés. La découverte de l'implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l'activité inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. Dans la plupart des carcinomes, une hyperméthylation de la région 5' de hTERT bloque l'effet inhibiteur de CTCF, alors qu'une petite région hypométhylée permet un faible niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie spécifiquement sur la région 5' méthylée de hTERT dans différentes lignées cellulaires et qu'elle est impliquée dans la répression partielle de la transcription de hTERT dans les cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans ces cellules, le facteur PAX5 se lie sur la région 5' de hTERT en aval du site d'initiation de la traduction (ATG). L'expression exogène de PAX5 dans les cellules télomérase-négatives active la transcription de hTERT, alors que la répression de PAX5 dans les cellules lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans l'activation de l'expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au diagnostic cytologique dans les liquides céphalorachidiens. Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la méthylation du gène hTERT. La méthylation de hTERT s'est aussi révélée être un nouveau et prometteur biomarqueur de cancer. SUMMARY Human telomerase is an "immortalizing" enzyme that enables cells to maintain telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. Conversely, normal somatic cells that do not express telomerase have a finite replicative capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors, and the role of DNA methylation and histone acetylation, an abundance of hTERT regulatory models have been suggested. The discovery of the implication of CTCF in the transcriptional regulation of hTERT in part explained the mechanism of silencing of telomerase in most somatic cells and its reactivation in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by methylation-dependent and -independent mechanisms. In most carcinoma cells, hypermethylation of the hTERT 5' region has been shown to block the inhibitory effect of CTCF, while a short hypomethylated region allows a low transcription level of the gene. We have demonstrated that MBD2 protein specifically binds the methylated 5' region of hTERT in different cell lines and is therefore involved in the partial repression of hTERT transcription in methylated tumor cells. In contrast, we have shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. The PAX5 factor has been shown to bind to the hTERT 5'region downstream of the ATG translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in telomerase-positive B cells. These results reveal differences between the hTERT methylation patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The potential of hTERT methylation as a cancer biomarker was evaluated and applied to the detection of metastasis. We have shown that hTERT methylation correlates with the cytological diagnosis in cerebrospinal fluids. Our results suggest a model of hTERT gene regulation, which helps us to better understand how hTERT transcription is regulated by CTCF in methylation-dependant and independent mechanisms. Our data also indicate that hTERT methylation is a promising new cancer biomarker.
Resumo:
Recently, the booming rural tourism in endemic areas of the state of Minas Gerais was identified as a contributing factor in the dissemination of the infection with Schistosoma mansoni. This article presents data from six holiday resorts in a rural district approximately 100 km distant from Belo Horizonte, MG, Brazil, where a possibly new and until now unperceived way of transmission was observed. The infection takes place in swimming pools and little ponds, which are offered to tourists and the local population for fishing and leisure activities. The health authorities of the district reported cases of schistosomiasis among the local population after visiting these sites. As individuals of the non-immune middle class parts of the society of big urban centers also frequent these resorts, infection of these persons cannot be excluded. A malacological survey revealed the presence of molluscs of the species Biomphalaria glabrata and Biomphalaria straminea at the resorts. The snails (B. glabrata) of one resort tested positive for S. mansoni. In order to resolve this complex problem a multidisciplinary approach including health education, sanitation measures, assistance to the local health services, and evolvement of the local political authorities, the local community, the tourism association, and the owners of the leisure resorts is necessary. This evidence emphasizes the urgent need for a participative strategic plan to develop the local tourism in an organized and well-administered way. Only so this important source of income for the region can be ensured on the long term without disseminating the disease and putting the health of the visitors at risk.
Resumo:
PURPOSE OF REVIEW: NEDD4-2 is an ubiquitin-protein ligase that was originally identified as an interactor of the epithelial Na+ channel (ENaC); this interaction is defective in Liddle's syndrome, causing elevated ENaC activity and salt-sensitive hypertension. In this review we aim to highlight progress achieved in recent years demonstrating that NEDD4-2 is involved in the control of Na+ transporters that are different from ENaC, but which also play a role in salt-sensitive hypertension. RECENT FINDINGS: It has been shown that NEDD4-2 interacts with ubiquitylates and negatively regulates the thiazide-sensitive NCC (Na+,Cl- -cotransporter), both in vitro and in vivo in inducible, nephron-specific Nedd4-2 knockout mice. Moreover, evidence has been provided that NEDD4-2 is also involved in the regulation of human NHE3 (Na+,H+-exchanger 3) and NKCC2 (Na+,K+,2Cl- -cotransporter 2). SUMMARY: The emerging role of NEDD4-2 in the regulation of different Na+ transporters along the nephron and the identification of human polymorphisms in the NEDD4-2 gene (Nedd4L) related to salt-sensitive hypertension makes this ubiquitin-protein ligase an interesting target for the development of antihypertensive drugs.
Resumo:
OBJECTIVE: To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. METHODS: We compared newly initiated TNF inhibition for axSpA in 363 patients enrolled in private practices with 100 patients recruited in 6 university hospitals within the Swiss Clinical Quality Management (SCQM) cohort. RESULTS: All patients had been treated with ≥ 1 nonsteroidal antiinflammatory drug and > 70% of patients had a baseline Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ≥ 4 before anti-TNF agent initiation. The proportion of patients with nonradiographic axSpA (nr-axSpA) treated with TNF inhibitors was higher in hospitals versus private practices (30.4% vs 18.7%, p = 0.02). The burden of disease as assessed by patient-reported outcomes at baseline was slightly higher in the hospital setting. Mean levels (± SD) of the Ankylosing Spondylitis Disease Activity Score were, however, virtually identical in private practices and academic centers (3.4 ± 1.0 vs 3.4 ± 0.9, p = 0.68). An Assessment of SpondyloArthritis international Society (ASAS40) response at 1 year was reached for ankylosing spondylitis in 51.7% in private practices and 52.9% in university hospitals (p = 1.0) and for nr-axSpA in 27.5% versus 25.0%, respectively (p = 1.0). CONCLUSION: With the exception of a lower proportion of patients with nr-axSpA newly treated with anti-TNF agents in private practices in comparison to academic centers, adherence to ASAS treatment recommendations for TNF inhibition was equally high, and similar response rates to TNF blockers were achieved in both clinical settings.
Resumo:
The transfer factor for carbon monoxide (TLCO) is widely used in pulmonary function laboratories because it represents a unique non-invasive window on pulmonary microcirculation. The TLCO is the product of two primary measurements, the alveolar volume (VA) and the CO transfer coefficient (KCO). This test is most informative when VA and KCO are examined, together with their product TLCO. In a normal lung, a low VA due to incomplete expansion is associated with an elevated KCO, resulting in a mildly reduced TLCO. Thus, in case of low VA, a seemingly "normal KCO" must be interpreted as an abnormal gas transfer. The most common clinical conditions associated with an abnormal TLCO are characterised by a limited number of patterns for VA and KCO: incomplete lung expansion, discrete loss of alveolar units, diffuse loss of alveolar units, emphysema, pulmonary vascular disorders, high pulmonary blood volume, alveolar haemorrhage.
Resumo:
Introduction: Apoptosis plays a central role in chronic hepatitis C virus (HCV) infection. Although the activation of cell death signals has been reported, HCV infection persists in most patients suggesting a pro-survival adaptation, eventually developing hepatocellular carcinoma. This study focused on the role of mitochondria in the activation of pro- and antiapoptotic response in cells expressing HCV proteins. Materials and Methods: Human Osteosarcoma U2-OS cells inducibly expressing the HCV polyprotein; huh7.5 hepatoma cells transfected with full length HCV genome. Results: Long term induction of viral proteins in U2-OS cells induced a cyclosporine A-sensitive cytochrome c partial release from mitochondria, revealed by immunofluorescence, western blot and spectral analysis. In HCV-transfected Huh7.5 cells, release of the apoptosis inducing factor (AIF) with no apparent nuclear translocation was also observed. HCV positive cells displayed an HIF-dependent enhanced glycolysis, charachterized by up-regulation of the mitochondria-bound Hexokinase II (HKII); preliminary data on signal transduction pathway revealed the iperphosphorylation of Glycogen synthase kinase 3b(GSK3b). Conclusion: HCV causes a cell stress activating an early apoptotic response, the entity of which likely depends on the cell type. Nevertheless a wide series of cell survival mechanisms are also triggered resulting in a metabolic adaptation possibly favouring carcinogenesis. Based on our results, we propose a pro-survival mechanism linking HCV infection to inhibition of GSK-3b, stabilization of HIF1a and up-regulation of HKII, the last events causing a glycolytic shift and protecting from apoptosis.