866 resultados para Myopic addiction
Resumo:
Myopia is a refractive condition and develops because either the optical power of the eye is abnormally great or the eye is abnormally long, the optical consequences being that the focal length of the eye is too short for the physical length of the eye. The increase in axial length has been shown to match closely the dioptric error of the eye, in that a lmm increase in axial length usually generates 2 to 3D of myopia. The most common form of myopia is early-onset myopia (EO M) which occurs between 6 to 14 years of age. The second most common form of myopia is late-onset myopia (LOM) which emerges in late teens or early twenties, at a time when the eye should have ceased growing. The prevalence of LOM is increasing and research has indicated a link with excessive and sustained nearwork. The aim of this thesis was to examine the ocular biometric correlates associated with LOM and EOM development and progression. Biometric data was recorded on SO subjects, aged 16 to 26 years. The group was divided into 26 emmetropic subjects and 24 myopic subjects. Keratometry, corneal topography, ultrasonography, lens shape, central and peripheral refractive error, ocular blood flow and assessment of accommodation were measured on three occasions during an ISmonth to 2-year longitudinal study. Retinal contours were derived using a specially derived computer program. The thesis shows that myopia progression is related to an increase in vitreous chamber depth, a finding which supports previous work. The myopes exhibited hyperopic relative peripheral refractive error (PRE) and the emmetropes exhibited myopic relative PRE. Myopes demonstrated a prolate retinal shape and the retina became more prolate with myopia progression. The results show that a longitudinal, rather than equatorial, increase in the posterior segment is the principal structural correlate of myopia. Retinal shape, relative PRE and the ratio of axial length to corneal curvature have been indicated, in this thesis, as predictive factors for myopia onset and development. Data from this thesis demonstrates that myopia progression in the LOM group is the result of an increase in anterior segment power, owing to an increase in lens thickness, in conjunction with posterior segment elongation. Myopia progression in the EOM group is the product of a long posterior segment, which over-compensates for a weak anterior segment power. The weak anterior segment power in the EOM group is related to a combination of crystalline lens thinning and surface flattening. The results presented in this thesis confirm that posterior segment elongation is the main structural correlate in both EOM and LOM progression. The techniques and computer programs employed in the thesis are reproducible and robust providing a valuable framework for further myopia research and assessment of predictive factors.
Resumo:
Many workers have studied the ocular components which occur in eyes exhibiting differing amounts of central refractive error but few have ever considered the additional information that could be derived from a study of peripheral refraction. Before now, peripheral refraction has either been measured in real eyes or has otherwise been modelled in schematic eyes of varying levels of sophistication. Several differences occur between measured and modelled results which, if accounted for, could give rise to more information regarding the nature of the optical and retinal surfaces and their asymmetries. Measurements of ocular components and peripheral refraction, however, have never been made in the same sample of eyes. In this study, ocular component and peripheral refractive measurements were made in a sample of young near-emmetropic, myopic and hyperopic eyes. The data for each refractive group was averaged. A computer program was written to construct spherical surfaced schematic eyes from this data. More sophisticated eye models were developed making use of linear algebraic ray tracing program. This method allowed rays to be traced through toroidal aspheric surfaces which were translated or rotated with respect to each other. For simplicity, the gradient index optical nature of the crystalline lens was neglected. Various alterations were made in these eye models to reproduce the measured peripheral refractive patterns. Excellent agreement was found between the modelled and measured peripheral refractive values over the central 70o of the visual field. This implied that the additional biometric features incorporated in each eye model were representative of those which were present in the measured eyes. As some of these features are not otherwise obtainable using in vivo techniques, it is proposed that the variation of refraction in the periphery offers a very useful optical method for studying human ocular component dimensions.
Resumo:
It has been proposed that early-onset myopia (EOM) i.e. myopia onset before the age of 15 is primarily inherited whereas late-onset myopia (LOM) i.e. myopia onset after the age of 16 is induced by environmental factors, principally sustained near vision. No consensus exists as to which aspect of the near vision response; accommodation, vergence or their synergistic cross links promotes LOM development. Furthermore, the mechanism by which near vision could induce elongation of posterior chamber is obscure although there is evidence to show that ciliary muscle tone plays an important role. By comparing accommodation and vergence responses of emmetropes (EMMs), EOMs and LOMs under both open- and closed-loop conditions, this thesis aims to define further the oculomotor correlates of myopic development. A Canon Autoref R-1 optometer was used to measure accommodation responses while an Apple IIe controlled the flashed Maddox Rod sequence used when measuring vergence. Both techniques permitted open- and closed-loop measures to be obtained. The results presented demonstrate that it is unlikely that those individuals susceptible to LOM can be distinguished with regard to oculomotor responses or innervational characteristics of the ciliary muscle. The aetiology of LOM may be associated with ciliary muscle function but account needs to be taken of interactions between the ciliary muscle, choriod, sclera and introcular pressure and further research is necessary before those EMMs susceptible to LOM can be identified.
Resumo:
In an endeavour to provide further insight into the maturation of the human visual system, the contiguous development of the pattern reversal VEP, flash VEP and flash ERG was studied in a group of neurologically normal pre-term infants, born between 28 and 35 weeks gestation. Maturational changes were observed in all the evoked electrophysiological responses recorded, these were mainly characterised by an increase in the complexity of the waveform and a shortening in the latency of the response. Initially the ERG was seen to consist of a broad b-wave only, with the a-wave emerging at an average age of 40 weeks PMA. The a-wave showed only a slight reduction in latency and a modest increase in amplitude as the infant grows older, whereas the changes seen in the ERG b-wave were much more dramatic. Pattern reversal VEPs were successfully recorded for the first time during the pre-term period. Flash VEPs were also recorded for comparison. The neonatal pattern reversal VEP consistently showed a major positive component (P1) of long latency. As the infant grew older, the latency of the P1 component decreased and was found to be negatively correlated with PMA at recording. The appearance of the N1 and N2 components became more frequent as the infant matured. The majority of infants were found to be myopic at birth and refractive error was correlated with PMA, with emmetropisation occurring at about 45 weeks PMA. The pattern reversal VEP in response to 2o checks was apparently unaffected by refractive error.
Resumo:
In the absence of adequate visual stimulation accommodation adopts an intermediate resting position, appropriately termed tonic accommodation (TA). A period of sustained fixation can modify the tonic resting position, and indicate the adaptation properties of TA. This thesis investigates various factors contributing to the accommodative response during sustained visual tasks, in particular the adaptation of TA. Objective infra-red optometry was chosen as the most effective method of measurement of accommodation. This technique was compared with other methods of measuring TA and the results found to be well correlated. The inhibitory sympathetic input to the ciliary muscle provides the facility to attenuate the magnitude and duration of adaptive changes in TA. This facility is, however, restricted to those individuals having relatively high levels of pre-task TA. Furthermore, the facility is augmented by substantial levels of concurrent parasympathetic activity. The imposition of mental effort can induce concurrent changes in TA which are predominantly positive and largely the result of an increase in parasympathetic innervation of the ciliary muscle although there is some evidence for sympathetic attentuation at higher levels of TA. In emmetropes sympathetic inhibition can modify the effect of mental effort on the steady-state accommodative response at near. Late-onset myopes (onset after the age of 15 years) have significantlylower values of TA then emmetropes. Similarly, late-onset myopes show lower values of steady-state accommodative response for nearstimuli. The imposition of mental effort induces concurrent increases in TA and steady-state accommodative response in the myopic group which are significantly greater than those for emmetropes. Estimates of TA made under bright empty-field conditions are well correlated with those made under darkroom conditions. The method by which the accommodative loop is opened has no significant effect on the magnitude and duration of post-task shifts in TA induced by a near vision task. Significant differences in the post-task shifts in TA induced by a near vision task exist between emmetropes and late-onset myopes, the post-task shifts being more sustained for the myopic group.
Resumo:
The ocular problems associated with premature birth have been with us ever since it was discovered that the application of high levels of inspired oxygen provided a reduction in mortality. The consequence of this reduction in mortality has been a rise in morbidity; these mortality and morbidity rates have oscillated during the attempt to find a reasonable balance. The use of contemporary technology during the attempt both to understand the premature baby's delicate physiology and to maintain life to younger and lighter babies has not yet produced stability. The incidence of typical retinal maldevelopment, retinopathy of prematurity (RCP), was analysed by serial weekly ophthalmoscopy examinations in a regional special care baby unit, 579 examinations being made on 138 babies. The best instrument for this examination was found to be a compact indirect ophthalmoscope incorporating an inverting eyepiece - the Reichert Jung monocular indirect ophthalmoscope. The optimum time for ocular examination to discover potential ocular morbidity was at 33 weeks post-conceptual age (PCA) with continued examinations to the age of 37 weeks PCA. The babies that were found to be at risk of a significant grade of RCP were found to be of a birth weight of less than 1251 grams or had an estimated gestational age at birth of 30 weeks or less. A refractive state of myopia was found to be the norm. The myopia reduced as life progressed to attain emmetropia around the age of 50 weeks PCA or 22 weeks survival. The reduction of the myopic state was found to be dependent on birth weight and gestational age at birth, the youngest and therefore the lightest being more predictable in attaining emmetropia. Refractive variations were found to be coincident with the timings of certain medical treatment regimes and a hypothesis is postulated as to the mechanism of this association.
Resumo:
The Aston Eye Study (AES) was instigated in October 2005 to determine the distribution of refractive error and associated ocular biometry in a sample of UK urban school children. The AES is the first study to compare outcome measures separately in White, South Asian and Black children. Children were selected from two age groups (Year 2 children aged 6/7 years, Year8 children aged 12/13 years of age) using random cluster sampling of schools in Birmingham, West Midlands UK. To date, the AES has examined 598 children (302 Year 2,296 Year 8). Using open-field cycloplegic autorefraction, the overall prevalence of myopia (=-0.50D SER in either eye) determined was 19.6%, with a higher prevalence in older (29.4%) compared to younger (9.9%) children (p<0.001). Using multiple logistic regression models, the risk of myopia was higher in Year 8 South Asian compared to White children and higher in children attending grammar schools relative to comprehensive schools. In addition, the prevalence of uncorrected ametropia was found to be high (Year 8: 12.84%, Year 2: 15.23%), which will be of concern to bodies responsible for the implementation of school vision screening strategies. Biometric data using non-contact partial coherence interferometry revealed a contributory effect of axial length (AL) and central corneal radius (CR) on myopic refraction, resulting in a strong coefficient of determination of the AL/CR ratio on refractive error. Ocular biometric measures did not vary significantly as a function of ethnicity, suggesting a greater miscorrelation of components in susceptible ethnic groups to account for their higher myopia prevalence. Corneal radius was found to be steeper in myopes in both age groups, but was found to flatten with increasing axial length. Due to the inextricable link between myopia and axial elongation, the paradoxical finding of the cornea demands further longitudinal investigation, particularly in relation to myopia onset. Questionnaire analysis revealed a history of myopia in parents and siblings to be significantly associated with myopia in Year 8 children, with a dose-dependent rise in the odds ratio of myopia evident with increasing number of myopic parents. By classifying socioeconomic status (SES) using Index of Multiple Deprivation values, it was found that Year 8 children from moderately deprived backgrounds were more at risk of myopia compared with children located at both extremities of the deprivation spectrum. However, the main effect of SES weakened following multivariate analysis, with South Asian ethnicity and grammar schooling remaining associated with Year 8 myopia after adjustment.
Resumo:
By addressing the vascular features that characterise myopia, this thesis aims to provide an understanding of the early structural changes associated with human myopia and the progression to co-morbidity with age. This thesis addresses three main areas of study: 1. Ocular perfusion features and autoregulatory mechanisms in human myopia; 2. Choroidal thickness at the macular area of myopic eyes; 3. Effect of chronic smoking on the ocular haemodynamics and autoregulation. This thesis demonstrated a reduced resting ocular pulse amplitude and retrobulbar blood flow in human myopia, associated with an apparent oversensitivity to the vasodilatory effects of hypercapnia, which may be due to anatomical differences in the volume of the vessel beds. In young smokers, normal resting state vascular characteristics were present; however there also appeared to be increased reactivity to hypercapnia, possibly due to relative chronic hypoxia. The systemic circulation in myopes and smokers over-reacted similarly to hypercapnia suggesting that physiologic differences are not confined to the eye. Age also showed a negative effect on autoregulatory capacity in otherwise normal eyes. Collectively, these findings suggest that myopes and smokers require greater autoregulatory capacity to maintain appropriate oxygenation of retinal tissue, and since the capacity for such regulation reduces with age, these groups are at greater risk of insufficient autoregulation and relative hypoxia with age.
Resumo:
The relationship between accommodation and intraocular pressure (lOP) has not been addressed as a research question for over 20 years, when measurement of both of these parameters was less advanced than today. Hence the central aim of this thesis was to evaluate the effects of accommodation on lOP. The instrument of choice throughout this thesis was the Pulsair EasyEye non-contact tonometer (NCT) due principally to its slim-line design which allowed the measurement of lOP in one eye and simultaneous stimulation of accommodation in the other eye. A second reason for using the Pulsair EasyEye NCT was that through collaboration with the manufacturers (Keeler, UK) the instrument's operational technology was made accessible. Hence, the principle components underpinning non-contact lOP measures of 0.1mmHg resolution (an order of magnitude greater than other methods) were made available. The relationship between the pressure-output and corneal response has been termed the pressure-response relationship, aspects of which have been shown to be related to ocular biometric parameters. Further, analysis of the components of the pressure-response relationship together with high-speed photography of the cornea during tonometry has enhanced our understanding of the derivation of an lOP measure with the Pulsair EasyEye NCT. The NCT samples the corneal response to the pressure pulse over a 19 ms cycle photoelectronically, but computes the subject's lOP using the data collected in the first 2.34 ms. The relatively instantaneous nature of the lOP measurement renders the measures susceptible to variations in the steady-state lOP caused by the respiratory and cardiac cycles. As such, the variance associated with these cycles was minimised by synchronising the lOP measures with the cardiac trace and maintaining a constant pace respiratory cycle at 15 breathes/minute. It is apparent that synchronising the lOP measures with the peak, middle or trough of the cardiac trace significantly reduced the spread of consecutive measures. Of the 3 locations investigated, synchronisation with the middle location demonstrated the least variance (coeflicient of variation = 9.1%) and a strong correlation (r = 0.90, p = <0.001) with lOP values obtained with Goldmann contact tonometry (n = 50). Accordingly lOP measures synchronised with the middle location of the cardiac cycle were taken in the RE while the LE fixated low (L; zero D), intermediate (I; 1.50 D) and high (H; 4 D) accommodation targets, Quasi-continuous measures of accommodation responses were obtained during the lOP measurement period using the portable infrared Grand Seiko FR-5000 autorefractor. The lOP reduced between L and I accommodative levels by approximately 0.61 mmHg (p <0.00 I). No significant reduction in IOP between L and H accommodation levels was elicited (p = 0.65) (n = 40). The relationship between accommodation and lOP was characterised by substantial inter-subject variations. Myopes demonstrated a tendency to show a reduction in IOP with accommodation which was significant only with I accommodation levels when measured with the NCT (r = 0.50, p = 0.01). However, the relationship between myopia and lOP change with accommodation reached significance for both I (r = 0.61, p= 0.003) and H (r = 0.531, p= 0.0 1) accommodation levels when measured with the Ocular blood Flow Analyser (OBFA). Investigation of the effects of accommodation on the parameters measured by the OBFA demonstrated that with H accommodation levels the pulse amplitude (PA) and pulse rate (PR) responses differed between myopes and emmetropes (PA: p = 0.03; PR: p = 0.004). As thc axial length increased there was a tendency for the pulsatile ocular blood flow (POBF) to reduce with accommodation, which was significant only with H accommodation levels (r = 0.38, p = 0.02). It is proposed that emmetropes arc able to regulate the POBF responses to changes in ocular perfusion pressure caused by changes in lOP with I (r = 0.77, p <0.001) and H (r = 0.73, p = 0.001) accommodation levels. However, thc relationship between lOP and POBF changes in the myopes was not correlated for both I (r = 0.33, p = 0.20) and H (r = 0.05, p = 0.85) accommodation levels. The thesis presents new data on the relationships between accommodation, lOP and parameters of the OBFA,: and provides evidence for possible lOP and choroidal blood flow regulatory mechanisms. Further the data highlight possible deficits in the vascular regulation of the myopic eye during accommodation, which may play a putative role in the aetiology of myopia development.
Resumo:
The thesis investigates the relationship between the biomechanical properties of the anterior human sclera and cornea in vivo using Schiotz tonometry (ST), rebound tonometry (RBT, iCare) and the Ocular Response Analyser (ORA, Reichert). Significant differences in properties were found to occur between scleral quadrants. Structural correlates for the differences were examined using Partial Coherent Interferometry (IOLMaster, Zeiss), Optical Coherent tomography (Visante OCT), rotating Scheimpflug photography (Pentacam, Oculus) and 3-D Magnetic Resonance Imaging (MRI). Subject groups were employed that allowed investigation of variation pertaining to ethnicity and refractive error. One hundred thirty-five young adult subjects were drawn from three ethnic groups: British-White (BW), British-South-Asian (BSA) and Hong-Kong-Chinese (HKC) comprising non-myopes and myopes. Principal observations: ST demonstrated significant regional variation in scleral resistance a) with lowest levels at quadrant superior-temporal and highest at inferior-nasal; b) with distance from the limbus, anterior locations showing greater resistance. Variations in resistance using RBT were similar to those found with ST; however the predominantly myopic HKC group had a greater overall mean resistance when compared to the BW-BSA group. OCT-derived scleral thickness measurements indicated the sclera to be thinner superiorly than inferiorly. Thickness varied with distance from the corneolimbal junction, with a decline from 1 to 2 mm followed by a successive increase from 3 to 7 mm. ORA data varied with ethnicity and refractive status; whilst axial length (AL) was associated with corneal biometrics for BW-BSA individuals it was associated with IOP in the HKC individuals. Complex interrelationships were found between ORA Additional-Waveform-Parameters and biometric data provided by the Pentacam. OCT indicated ciliary muscle thickness to be greater in myopia and more directly linked to posterior ocular volume (from MRI) than AL. Temporal surface areas (SAs, from MRI) were significantly smaller than nasal SAs in myopic eyes; globe bulbosity (from MRI) was constant across quadrants.
Resumo:
PURPOSE - To compare posterior vitreous chamber shape in myopia to that in emmetropia. METHODS - Both eyes of 55 adult subjects were studied, 27 with emmetropia (MSE =-0.55; <+0.75D; mean +0.09 ±0.36D) and 28 with myopia (MSE -5.87 ±2.31D). Cycloplegic refraction was measured with a Shin Nippon autorefractor and anterior chamber depth and axial length with a Zeiss IOLMaster. Posterior vitreous chamber shapes were determined from T2-weighted MRI (3-Tesla) using procedures previously reported by our laboratory. 3-D surface model coordinates were assigned to nasal, temporal, superior and inferior quadrants and plotted in 2-D to illustrate the composite shape of respective quadrants posterior to the second nodal point. Spherical analogues of chamber shape were constructed to compare relative sphericity between refractive groups and quadrants. RESULTS - Differences in shape occurred in the region posterior to points of maximum globe width and were thus in general accord with an equatorial model of myopic expansion. Shape in emmetropia is categorised distinctly as that of an oblate ellipse and in myopia as an oblate ellipse of significantly less degree such that it approximates to a sphere. There was concordance between shape and retinotopic projection of respective quadrants into right, left, superior and inferior visual fields. CONCLUSIONS - The transition in shape from oblate ellipse to sphere with axial elongation supports the hypothesis that myopia may be a consequence of equatorial restriction associated with biomechanical anomalies of the ciliary apparatus. The synchronisation of quadrant shapes with retinotopic projection suggests that binocular growth is coordinated by processes that operate beyond the optic chiasm.
Resumo:
The tendency of managers to focus on short-term results rather than on sustained company success is of particular importance to retail marketing managers, because marketing activities involve expenditures which may only pay off in the longer term. To address the issue of myopic management, our study shows how the complexity of the service profit chain (SPC) can cause managers to make suboptimal decisions. Hence, our paper departs from past research by recognizing that understanding the temporal interplay between operational investments, employee satisfaction, customer satisfaction, and operating profit is essential to achieving sustained success. In particular, we intend to improve understanding of the functioning of the SPC with respect to time lags and feedback loops. Results of our large-scale longitudinal study set in a multi-outlet retail chain reveal time-lag effects between operational investments and employee satisfaction, as well as between customer satisfaction and performance. These findings, along with evidence of a negative interaction effect of employee satisfaction on the relationship between current performance and future investments, show the substantial risk of mismanaging the SPC. We identify specific situations in which the dynamic approach leads to superior marketing investment decisions, when compared to the conventional static view of the SCP. These insights provide valuable managerial guidance for effectively managing the SPC over time. © 2012 New York University.
Resumo:
Designers of self-adaptive systems often formulate adaptive design decisions, making unrealistic or myopic assumptions about the system's requirements and environment. The decisions taken during this formulation are crucial for satisfying requirements. In environments which are characterized by uncertainty and dynamism, deviation from these assumptions is the norm and may trigger 'surprises'. Our method allows designers to make explicit links between the possible emergence of surprises, risks and design trade-offs. The method can be used to explore the design decisions for self-adaptive systems and choose among decisions that better fulfil (or rather partially fulfil) non-functional requirements and address their trade-offs. The analysis can also provide designers with valuable input for refining the adaptation decisions to balance, for example, resilience (i.e. Satisfiability of non-functional requirements and their trade-offs) and stability (i.e. Minimizing the frequency of adaptation). The objective is to provide designers of self adaptive systems with a basis for multi-dimensional what-if analysis to revise and improve the understanding of the environment and its effect on non-functional requirements and thereafter decision-making. We have applied the method to a wireless sensor network for flood prediction. The application shows that the method gives rise to questions that were not explicitly asked before at design-time and assists designers in the process of risk-aware, what-if and trade-off analysis.
Resumo:
Purpose - Anterior segment optical coherent tomography (AS-OCT) is used to further examine previous reports that ciliary muscle thickness (CMT) is increased in myopic eyes. With reference to temporal and nasal CMT, interrelationships between biometric and morphological characteristics of anterior and posterior segments are analysed for British-White and British-South-Asian adults with and without myopia. Methods - Data are presented for the right eyes of 62 subjects (British-White n = 39, British-South-Asian n = 23, aged 18–40 years) with a range of refractive error (mean spherical error (MSE (D)) -1.74 ± 3.26; range -10.06 to +4.38) and separated into myopes (MSE (D) <-0.50, range -10.06 to -0.56; n = 30) and non-myopes (MSE (D) =-0.50, -0.50 to +4.38; n = 32). Temporal and nasal ciliary muscle cross-sections were imaged using a Visante AS-OCT. Using Visante software, manual measures of nasal and temporal CMT (NCMT and TCMT respectively) were taken in successive posterior 1 mm steps from the scleral spur over a 3 mm distance (designated NCMT1, TCMT1 et seq). Measures of axial length and anterior chamber depth were taken with an IOLMaster biometer. MSE and corneal curvature (CC) measurements were taken with a Shin-Nippon auto-refractor. Magnetic resonance imaging was used to determine total ocular volume (OV) for 31 of the original subject group. Statistical comparisons and analyses were made using mixed repeated measures anovas, Pearson's correlation coefficient and stepwise forward multiple linear regression. Results - MSE was significantly associated with CMT, with thicker CMT2 and CMT3 being found in the myopic eyes (p = 0.002). In non-myopic eyes TCMT1, TCMT2, NCMT1 and NCMT2 correlated significantly with MSE, AL and OV (p < 0.05). In contrast, myopic eyes failed generally to exhibit a significant correlation between CMT, MSE and axial length but notably retained a significant correlation between OV, TCMT2, TCMT3, NCMT2 and NCMT3 (p < 0.05). OV was found to be a significantly better predictor of TCMT2 and TCMT3 than AL by approximately a factor of two (p < 0.001). Anterior chamber depth was significantly associated with both temporal and nasal CMT2 and CMT3; TCMT1 correlated positively with CC. Ethnicity had no significant effect on differences in CMT. Conclusions - Increased CMT is associated with myopia. We speculate that the lack of correlation in myopic subjects between CMT and axial length, but not between CMT and OV, is evidence that disrupted feedback between the fovea and ciliary apparatus occurs in myopia development.
Resumo:
Objective: To assess the magnitude of nearwork-induced transient myopia (NITM) under binocular viewing conditions separately in each eye of individuals with mild to moderate anisometropia to determine the relationship between NITM and their interocular refractive error. Methods: Forty-three children and young adults with anisometropia [cycloplegic spherical equivalent (SE) difference >1.00 D] were tested (ages 9-28 years). NITM was measured with binocular viewing separately in each eye after binocularly performing a sustained near task (5 D) for 5 min incorporating a cognitive demand using an open-field, infrared autorefractor (Grand-Seiko, WAM-5500). Data were averaged over 10 s bins for 3 min in each eye. Initial NITM, its decay time (DT), and its decay area (DA) were determined. A-scan ultrasound ocular biometry was also performed to determine the axial length of each eye. Results: The more myopic eye exhibited increased initial NITM, DT, and DA as compared to the less myopic eye (0.21 ± 0.16 D vs 0.15 ± 0.13 D, p = 0.026; 108.4 ± 64.3 secs vs 87.0 ± 65.2 secs, p = 0.04; and 17.6 ± 18.7 D*secs vs 12.3 ± 15.7 D*secs, p = 0.064), respectively. The difference in DA and the difference in SE between the more versus less myopic eye were significantly correlated (r = 0.31, p = 0.044). Furthermore, 63% (27/43), 56% (24/43), and 70% (30/43) of the more myopic eyes exhibited increased initial NITM, longer DT, and larger DA, respectively, than found in the less myopic eye. Conclusions: In approximately two-thirds of the anisometropic individuals, the initial NITM and its decay area were significantly increased in the more myopic eye as compared to the less myopic eye. NITM may play an important role in the development of interocular differences in myopia, although a causal relationship is yet to be established. Furthermore, the findings have potentially important implications regarding accommodative control and interocular accommodative responsitivity in anisometropia, in particular for anisomyopia. © 2013 The College of Optometrists.