957 resultados para Multivariate statistical methods
Resumo:
Running economy (RE), i.e. the oxygen consumption at a given submaximal speed, is an important determinant of endurance running performance. So far, investigators have widely attempted to individuate the factors affecting RE in competitive athletes, focusing mainly on the relationships between RE and running biomechanics. However, the current results are inconsistent and a clear mechanical profile of an economic runner has not been yet established. The present work aimed to better understand how the running technique influences RE in sub-elite middle-distance runners by investigating the biomechanical parameters acting on RE and the underlying mechanisms. Special emphasis was given to accounting for intra-individual variability in RE at different speeds and to assessing track running rather than treadmill running. In Study One, a factor analysis was used to reduce the 30 considered mechanical parameters to few global descriptors of the running mechanics. Then, a biomechanical comparison between economic and non economic runners and a multiple regression analysis (with RE as criterion variable and mechanical indices as independent variables) were performed. It was found that a better RE was associated to higher knee and ankle flexion in the support phase, and that the combination of seven individuated mechanical measures explains ∼72% of the variability in RE. In Study Two, a mathematical model predicting RE a priori from the rate of force production, originally developed and used in the field of comparative biology, was adapted and tested in competitive athletes. The model showed a very good fit (R2=0.86). In conclusion, the results of this dissertation suggest that the very complex interrelationships among the mechanical parameters affecting RE may be successfully dealt with through multivariate statistical analyses and the application of theoretical mathematical models. Thanks to these results, coaches are provided with useful tools to assess the biomechanical profile of their athletes. Thus, individual weaknesses in the running technique may be identified and removed, with the ultimate goal to improve RE.
Resumo:
PROBLEM In the last few years farm tourism or agritourism as it is also referred to has enjoyed increasing success because of its generally acknowledged role as a promoter of economic and social development of rural areas. As a consequence, a plethora of studies have been dedicated to this tourist sector, focusing on a variety of issues. Nevertheless, despite the difficulties of many farmers to orient their business towards potential customers, the contribution of the marketing literature has been moderate. PURPOSE This dissertation builds upon studies which advocate the necessity of farm tourism to innovate itself according to the increasingly demanding needs of customers. Henceforth, the purpose of this dissertation is to critically evaluate the level of professionalism reached in the farm tourism market within a marketing approach. METHODOLOGY This dissertation is a cross-country perspective incorporating the marketing of farm tourism studied in Germany and Italy. Hence, the marketing channels of this tourist sector are examined both from the supply and the demand side by means of five exploratory studies. The data collection has been conducted in the timeframe of 2006 to 2009 in manifold ways (online survey, catalogues of industry associations, face-to-face interviews, etc.) according to the purpose of the research of each study project. The data have been analyzed using multivariate statistical analysis. FINDINGS A comprehensive literature review provides the state of the art of the main differences and similarities of farm tourism in the two countries of study. The main findings contained in the empirical chapters provide insights on many aspects of agritourism including how the expectations of farm operators and customers differ, which development scenarios of farm tourism are more likely to meet individuals’ needs, how new technologies can impact the demand for farm tourism, etc. ORIGINALITY/VALUE The value of this study is in the investigation of the process by which farmers’ participation in the development of this sector intersects with consumer consumption patterns. Focusing on this process should allow farm operators and others including related businesses to more efficiently allocate resources.
Resumo:
It is well known that the deposition of gaseous pollutants and aerosols plays a major role in causing the deterioration of monuments and built cultural heritage in European cities. Despite of many studies dedicated to the environmental damage of cultural heritage, in case of cement mortars, commonly used in the 20th century architecture, the deterioration due to air multipollutants impact, especially the formation of black crusts, is still not well explored making this issue a challenging area of research. This work centers on cement mortars – environment interactions, focusing on the diagnosis of the damage on the modern built heritage due to air multi-pollutants. For this purpose three sites, exposed to different urban areas in Europe, were selected for sampling and subsequent laboratory analyses: Centennial Hall, Wroclaw (Poland), Chiesa dell'Autostrada del Sole, Florence (Italy), Casa Galleria Vichi, Florence (Italy). The sampling sessions were performed taking into account the height from the ground level and protection from rain run off (sheltered, partly sheltered and exposed areas). The complete characterization of collected damage layer and underlying materials was performed using a range of analytical techniques: optical and scanning electron microscopy, X ray diffractometry, differential and gravimetric thermal analysis, ion chromatography, flash combustion/gas chromatographic analysis, inductively coupled plasma-optical emission spectrometer. The data were elaborated using statistical methods (i.e. principal components analyses) and enrichment factor for cement mortars was calculated for the first time. The results obtained from the experimental activity performed on the damage layers indicate that gypsum, due to the deposition of atmospheric sulphur compounds, is the main damage product at surfaces sheltered from rain run-off at Centennial Hall and Casa Galleria Vichi. By contrast, gypsum has not been identified in the samples collected at Chiesa dell'Autostrada del Sole. This is connected to the restoration works, particularly surface cleaning, regularly performed for the maintenance of the building. Moreover, the results obtained demonstrated the correlation between the location of the building and the composition of the damage layer: Centennial Hall is mainly undergoing to the impact of pollutants emitted from the close coal power stations, whilst Casa Galleria Vichi is principally affected by pollutants from vehicular exhaust in front of the building.
Resumo:
Throughout the twentieth century statistical methods have increasingly become part of experimental research. In particular, statistics has made quantification processes meaningful in the soft sciences, which had traditionally relied on activities such as collecting and describing diversity rather than timing variation. The thesis explores this change in relation to agriculture and biology, focusing on analysis of variance and experimental design, the statistical methods developed by the mathematician and geneticist Ronald Aylmer Fisher during the 1920s. The role that Fisher’s methods acquired as tools of scientific research, side by side with the laboratory equipment and the field practices adopted by research workers, is here investigated bottom-up, beginning with the computing instruments and the information technologies that were the tools of the trade for statisticians. Four case studies show under several perspectives the interaction of statistics, computing and information technologies, giving on the one hand an overview of the main tools – mechanical calculators, statistical tables, punched and index cards, standardised forms, digital computers – adopted in the period, and on the other pointing out how these tools complemented each other and were instrumental for the development and dissemination of analysis of variance and experimental design. The period considered is the half-century from the early 1920s to the late 1960s, the institutions investigated are Rothamsted Experimental Station and the Galton Laboratory, and the statisticians examined are Ronald Fisher and Frank Yates.
Resumo:
Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.
Resumo:
Neurodevelopment of preterm children has become an outcome of major interest since the improvement in survival due to advances in neonatal care. Many studies focused on the relationships among prenatal characteristics and neurodevelopmental outcome in order to identify the higher risk preterms’ subgroups. The aim of this study is to analyze and put in relation growth and development trajectories to investigate their association. 346 children born at the S.Orsola Hospital in Bologna from 01/01/2005 to 30/06/2011 with a birth weight of <1500 grams were followed up in a longitudinal study at different intervals from 3 to 24 months of corrected age. During follow-up visits, preterms’ main biometrical characteristics were measured and the Griffiths Mental Development Scale was administered to assess neurodevelopment. Latent Curve Models were developed to estimate the trajectories of length and of neurodevelopment, both separately and combined in a single model, and to assess the influence of clinical and socio-economic variables. Neurodevelopment trajectory was stepwise declining over time and length trajectory showed a steep increase until 12 months and was flat afterwards. Higher initial values of length were correlated with higher initial values of neurodevelopment and predicted a more declining neurodevelopment. SGA preterms and those from families with higher status had a less declining neurodevelopment slope, while being born from a migrant mother proved negative on neurodevelopment through the mediating effect of a being taller at 3 months. A longer stay in NICU used as a proxy of preterms’ morbidity) was predictive of lower initial neurodevelopment levels. At 24 months, neurodevelopment is more similar among preterms and is more accurately evaluated. The association among preterms’ neurodevelopment and physiological growth may provide further insights on the determinants of preterms’ outcomes. Sound statistical methods, exploiting all the information collected in a longitudinal study, may be more appropriate to the analysis.
Resumo:
Despite the scientific achievement of the last decades in the astrophysical and cosmological fields, the majority of the Universe energy content is still unknown. A potential solution to the “missing mass problem” is the existence of dark matter in the form of WIMPs. Due to the very small cross section for WIMP-nuleon interactions, the number of expected events is very limited (about 1 ev/tonne/year), thus requiring detectors with large target mass and low background level. The aim of the XENON1T experiment, the first tonne-scale LXe based detector, is to be sensitive to WIMP-nucleon cross section as low as 10^-47 cm^2. To investigate the possibility of such a detector to reach its goal, Monte Carlo simulations are mandatory to estimate the background. To this aim, the GEANT4 toolkit has been used to implement the detector geometry and to simulate the decays from the various background sources: electromagnetic and nuclear. From the analysis of the simulations, the level of background has been found totally acceptable for the experiment purposes: about 1 background event in a 2 tonne-years exposure. Indeed, using the Maximum Gap method, the XENON1T sensitivity has been evaluated and the minimum for the WIMP-nucleon cross sections has been found at 1.87 x 10^-47 cm^2, at 90% CL, for a WIMP mass of 45 GeV/c^2. The results have been independently cross checked by using the Likelihood Ratio method that confirmed such results with an agreement within less than a factor two. Such a result is completely acceptable considering the intrinsic differences between the two statistical methods. Thus, in the PhD thesis it has been proven that the XENON1T detector will be able to reach the designed sensitivity, thus lowering the limits on the WIMP-nucleon cross section by about 2 orders of magnitude with respect to the current experiments.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
The objective of this study was to develop a criteria catalogue serving as a guideline for authors to improve quality of reporting experiments in basic research in homeopathy. A Delphi Process was initiated including three rounds of adjusting and phrasing plus two consensus conferences. European researchers who published experimental work within the last 5 years were involved. A checklist for authors provide a catalogue with 23 criteria. The “Introduction” should focus on underlying hypotheses, the homeopathic principle investigated and state if experiments are exploratory or confirmatory. “Materials and methods” should comprise information on object of investigation, experimental setup, parameters, intervention and statistical methods. A more detailed description on the homeopathic substances, for example, manufacture, dilution method, starting point of dilution is required. A further result of the Delphi process is to raise scientists' awareness of reporting blinding, allocation, replication, quality control and system performance controls. The part “Results” should provide the exact number of treated units per setting which were included in each analysis and state missing samples and drop outs. Results presented in tables and figures are as important as appropriate measures of effect size, uncertainty and probability. “Discussion” in a report should depict more than a general interpretation of results in the context of current evidence but also limitations and an appraisal of aptitude for the chosen experimental model. Authors of homeopathic basic research publications are encouraged to apply our checklist when preparing their manuscripts. Feedback is encouraged on applicability, strength and limitations of the list to enable future revisions.
Resumo:
The present study investigates the relation of perceived arousal (continuous self-rating), autonomic nervous system activity (heart rate, heart rate variability) and musical characteristics (sound intensity, musical rhythm) upon listening to a complex musical piece. Twenty amateur musicians listened to two performances of Chopin's "Tristesse" with different rhythmic shapes. Besides conventional statistical methods for analyzing psychophysiological reactions (heart rate, respiration rate) and musical variables, semblance analysis was used. Perceived arousal correlated strongly with sound intensity; heart rate showed only a partial response to changes in sound intensity. Larger changes in heart rate were caused by the version with more rhythmic tension. The low-/high-frequency ratio of heart rate variability increased-whereas the high frequency component decreased-during music listening. We conclude that autonomic nervous system activity can be modulated not only by sound intensity but also by the interpreter's use of rhythmic tension. Semblance analysis enables us to track the subtle correlations between musical and physiological variables.
Resumo:
[1] Instrumental temperature series are often affected by artificial breaks (“break points”) due to (e.g.,) changes in station location, land-use, or instrumentation. The Swiss climate observation network offers a high number and density of stations, many long and relatively complete daily to sub-daily temperature series, and well-documented station histories (i.e., metadata). However, for many climate observation networks outside of Switzerland, detailed station histories are missing, incomplete, or inaccessible. To correct these records, the use of reliable statistical break detection methods is necessary. Here, we apply three statistical break detection methods to high-quality Swiss temperature series and use the available metadata to assess the methods. Due to the complex terrain in Switzerland, we are able to assess these methods under specific local conditions such as the Foehn or crest situations. We find that the temperature series of all stations are affected by artificial breaks (average = 1 break point / 48 years) with discrepancies in the abilities of the methods to detect breaks. However, by combining the three statistical methods, almost all of the detected break points are confirmed by metadata. In most cases, these break points are ascribed to a combination of factors in the station history.
Resumo:
The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the Southampton area in southern England as a test-case. In this paper, we use the AEGISS project to illustrate how spatio-temporal point process methodology can be used in the development of a rapid-response, spatial surveillance system. Current surveillance of gastroenteric disease in the UK relies on general practitioners reporting cases of suspected food-poisoning through a statutory notification scheme, voluntary laboratory reports of the isolation of gastrointestinal pathogens and standard reports of general outbreaks of infectious intestinal disease by public health and environmental health authorities. However, most statutory notifications are made only after a laboratory reports the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al. (2003). A new and potentially valuable source of data on the incidence of non-specific gastro-enteric infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct data are less likely than reports by general practitioners to suffer from spatially and temporally localized inconsistencies in reporting rates. Also, reporting delays by patients are likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice specificity. Each call to NHS Direct is classified only according to the general pattern of reported symptoms (Cooper et al, 2003). The current paper focuses on the use of spatio-temporal statistical analysis for early detection of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric symptoms, as reported to NHS Direct. Section 2 describes our statistical formulation of this problem, the nature of the available data and our approach to predictive inference. Section 3 describes the stochastic model. Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the model is used for spatio-temporal prediction. The paper concludes with a short discussion.
Resumo:
There are numerous statistical methods for quantitative trait linkage analysis in human studies. An ideal such method would have high power to detect genetic loci contributing to the trait, would be robust to non-normality in the phenotype distribution, would be appropriate for general pedigrees, would allow the incorporation of environmental covariates, and would be appropriate in the presence of selective sampling. We recently described a general framework for quantitative trait linkage analysis, based on generalized estimating equations, for which many current methods are special cases. This procedure is appropriate for general pedigrees and easily accommodates environmental covariates. In this paper, we use computer simulations to investigate the power robustness of a variety of linkage test statistics built upon our general framework. We also propose two novel test statistics that take account of higher moments of the phenotype distribution, in order to accommodate non-normality. These new linkage tests are shown to have high power and to be robust to non-normality. While we have not yet examined the performance of our procedures in the context of selective sampling via computer simulations, the proposed tests satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.
Resumo:
A marker that is strongly associated with outcome (or disease) is often assumed to be effective for classifying individuals according to their current or future outcome. However, for this to be true, the associated odds ratio must be of a magnitude rarely seen in epidemiological studies. An illustration of the relationship between odds ratios and receiver operating characteristic (ROC) curves shows, for example, that a marker with an odds ratio as high as 3 is in fact a very poor classification tool. If a marker identifies 10 percent of controls as positive (false positives) and has an odds ratio of 3, then it will only correctly identify 25 percent of cases as positive (true positives). Moreover, the authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe a marker’s ability to classify subjects. Appropriate statistical methods for assessing and reporting the classification power of a marker are described. The serious pitfalls of using more traditional methods based on parameters in logistic regression models are illustrated.