935 resultados para Multiple or Simultaneous Equation Models: Time-Series Models


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the regulatory mechanisms that are responsible for an organism's response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed. While these tests answer the question whether a gene is differentially expressed, they do not explicitly address the question when a gene is differentially expressed, although this information may provide insights into the course and causal structure of regulatory programs. In this article, we propose a two-sample test for identifying intervals of differential gene expression in microarray time series. Our approach is based on Gaussian process regression, can deal with arbitrary numbers of replicates, and is robust with respect to outliers. We apply our algorithm to study the response of Arabidopsis thaliana genes to an infection by a fungal pathogen using a microarray time series dataset covering 30,336 gene probes at 24 observed time points. In classification experiments, our test compares favorably with existing methods and provides additional insights into time-dependent differential expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern process industry, it is often difficult to analyze a manufacture process due to its umerous time-series data. Analysts wish to not only interpret the evolution of data over time in a working procedure, but also examine the changes in the whole production process through time. To meet such analytic requirements, we have developed ProcessLine, an interactive visualization tool for a large amount of time-series data in process industry. The data are displayed in a fisheye timeline. ProcessLine provides good overviews for the whole production process and details for the focused working procedure. A preliminary user study using beer industry production data has shown that the tool is effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-series and sequences are important patterns in data mining. Based on an ontology of time-elements, this paper presents a formal characterization of time-series and state-sequences, where a state denotes a collection of data whose validation is dependent on time. While a time-series is formalized as a vector of time-elements temporally ordered one after another, a state-sequence is denoted as a list of states correspondingly ordered by a time-series. In general, a time-series and a state-sequence can be incomplete in various ways. This leads to the distinction between complete and incomplete time-series, and between complete and incomplete state-sequences, which allows the expression of both absolute and relative temporal knowledge in data mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-series analysis and prediction play an important role in state-based systems that involve dealing with varying situations in terms of states of the world evolving with time. Generally speaking, the world in the discourse persists in a given state until something occurs to it into another state. This paper introduces a framework for prediction and analysis based on time-series of states. It takes a time theory that addresses both points and intervals as primitive time elements as the temporal basis. A state of the world under consideration is defined as a set of time-varying propositions with Boolean truth-values that are dependent on time, including properties, facts, actions, events and processes, etc. A time-series of states is then formalized as a list of states that are temporally ordered one after another. The framework supports explicit expression of both absolute and relative temporal knowledge. A formal schema for expressing general time-series of states to be incomplete in various ways, while the concept of complete time-series of states is also formally defined. As applications of the formalism in time-series analysis and prediction, we present two illustrating examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates of population increase in early spring and the sizes of overwintering stocks were calculated for the planktonic copepods Pseudocalanus elongatus and Acartia clausi for a set of areas covering the open waters of the north-east Atlantic Ocean and the North Sea for the period 1948 to 1979. For both species, the rates of population increase were higher in the open ocean than in the North Sea and appear to be related to temperature. The overwintering stocks in the North Sea were larger than those in the open ocean and are probably related to phytoplanton concentration. P. elongatus shows higher overwintering stocks and lower rates of population increase than A. clausi, resulting in different levels of persistence in the stocks of the two species. It is suggested that this difference in persistence is responsible for differences between the two species with respect to geographical distribution in summer and different patterns of year-to-year fluctuations in abundance.