885 resultados para Multiple Instance Dictionary Learning
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a multiple logical ring (MLR) approach, thus with multiple independent tokens, to which a specific bridging protocol extension, the inter-domain protocol (IDP), was proposed. The IDP offers compatibility with standard PROFIBUS, and includes mechanisms to support inter-cell mobility of wireless nodes. We advance that work by proposing a worst-case response timing analysis of the IDP.
Resumo:
Este artigo relata o desenvolvimento de um modelo de ensino virtual em curso na Universidade dos Açores. Depois de ter sido adotado na lecionação de disciplinas da área da Teoria e Desenvolvimento Curricular em regime de e-learning e b-learning, o modelo foi, no ano académico de 2014/15, estendido à lecionação de outras disciplinas. Além de descrever o modelo e explicar a sua evolução, o artigo destaca a sua adoção no contexto particular de uma disciplina cuja componente online foi lecionada em circunstâncias especialmente desafiadoras. Neste sentido, explica o processo de avaliação da experiência, discute os seus resultados e sugere pistas de melhoria. Essa avaliação enquadra-se num processo de investigação do design curricular – a metodologia que tem sido usada para estudar o desenvolvimento do modelo.
Resumo:
Tese de doutoramento em Ciências da Educação, área de Teoria Curricular e Ensino das Ciências
Resumo:
To show with the case of Applied Optics (AO), the adequacy of blended learning to the teaching/learning process in experimental Science and technology (S&T).
Resumo:
Dissertação de mestrado em Geologia para o ensino
Resumo:
The aim of this article is to show how it is possible to integrate stories and ICT in Content Language Integrated Learning (CLIL) for English as a foreign language (EFL) learning in bilingual schools. Two Units of Work are presented. One, for the second year of Primary, is based on a Science topic, ‘Materials’. The story used is ‘The three little pigs’ and the computer program ‘JClic’. The other one is based on a Science and Arts topic for the sixth year of Primary, the story used is ‘Charlotte’s Web’ and the computer program ‘Atenex’.
Resumo:
In this paper, we intend to present some research carried out in a state Primary school, which is very well-equipped with ICT resources, including interactive whiteboards. The interactive whiteboard was used in the context of a Unit of Work for English learning, based on a traditional oral story, ‘Jack and the Beanstalk’. It was also used for reinforcing other topics like, ‘At the beach’, ‘In the city’, ‘Jobs’, etc. An analysis of the use of the digital board, which includes observation records as well as questionnaires for teachers and pupils, was carried out.
Resumo:
Mestrado em Educação Pré-Escolar
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
This paper provides a longitudinal, empirical view of the multifaceted and reciprocal processes of organizational learning in a context of self-managed teams. Organizational learning is seen as a social construction between people and actions in a work setting. The notion of learning as situated (Brown & Duguid 1989, Lave& Wenger 1991, Gherardi & al. 1998, Easterby-Smith & Araujo 1999, Abma 2003) opens up the possibility for placing the focus of research on learning in the community rather than in individual learning processes. Further, in studying processes in their social context, we cannot avoid taking power relations into consideration (Contu & Willmott 2003). The study is based on an action research with a methodology close to the ‘democratic dialogue’ presented by Gustavsen (2001). This gives a ground for research into how the learning discourse developed in the case study organization over a period of 5 years, during which time the company abandoned a middle management level of hierarchy and the teams had to figure out how to work as self-managed units. This paper discusses the (re)construction of power relations and its role in organizational learning. Power relations are discussed both in vertical and horizontal work relations. A special emphasis is placed on the dialectic between managerial aims and the space for reflection on the side of employees. I argue that learning is crucial in the search for the limits for empowerment and that these limits are negotiated both in actions and speech. This study unfolds a purpose-oriented learning process, constructing an open dialogue, and describes a favourable context for creative, knowledge building communities.
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
Rehabilitation is very important for in the results of treatment in individuals with multiple sclerosis. Rehabilitation processes occur through gradual changes. These changes integrate intrinsic and extrinsic mechanisms of the individual, promoting adaptations to the needs and activities of daily living according to individual goals. Recommendations for exercise in multiple sclerosis: these recommendations apply only to patients with EDSS less than 7; moderate intensity aerobic exercise for a total of 20 to 30 minutes, twice or three times for week; the resistance training with low or moderate intensity is well tolerated by patients with MS; associated with these exercises were recommended flexibility exercises of moderate intensity, as well as strengthening exercises. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in multiple sclerosis patients.
Resumo:
Background: Multiple Sclerosis (MS) is a chronic disease of the central nervous system that affects more often young adults in the prime of his career and personal development, with no cure and unknown causes. The most common signs and symptoms are fatigue, muscle weakness, changes in sensation, ataxia, changes in balance, gait difficulties, memory difficulties, cognitive impairment and difficulties in problem solving MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. Purpose: The aim of this study is to examine the implications of an Intervention Program of Physical Activity (IPPA) in quality of life in MS patients, six months after the intervention.
Resumo:
Background: Multiple sclerosis is a disease of the central nervous system that affects more frequently young women. It is a progressive and unpredictable disease, resulting in some cases of disabilities and limitations to physical, psychological and social level. Purpose: To review the literature for evidence based of the effectiveness of physiotherapy intervention in multiple sclerosis.
Resumo:
Mestrado em Ensino Precoce do Inglês