956 resultados para Multinomial logit models with random coefficients (RCL)
Resumo:
Minimal representations are known to have no redundant elements, and are therefore of great importance. Based on the notions of performance and size indices and measures for process systems, the paper proposes conditions for a process model being minimal in a set of functionally equivalent models with respect to a size norm. Generalized versions of known procedures to obtain minimal process models for a given modelling goal, model reduction based on sensitivity analysis and incremental model building are proposed and discussed. The notions and procedures are illustrated and compared on a simple example, that of a simple nonlinear fermentation process with different modelling goals and on a case study of a heat exchanger modelling. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Functional-structural plant models that include detailed mechanistic representation of underlying physiological processes can be expensive to construct and the resulting models can also be extremely complicated. On the other hand, purely empirical models are not able to simulate plant adaptability and response to different conditions. In this paper, we present an intermediate approach to modelling plant function that can simulate plant response without requiring detailed knowledge of underlying physiology. Plant function is modelled using a 'canonical' modelling approach, which uses compartment models with flux functions of a standard mathematical form, while plant structure is modelled using L-systems. Two modelling examples are used to demonstrate that canonical modelling can be used in conjunction with L-systems to create functional-structural plant models where function is represented either in an accurate and descriptive way, or in a more mechanistic and explanatory way. We conclude that canonical modelling provides a useful, flexible and relatively simple approach to modelling plant function at an intermediate level of abstraction.
Resumo:
In this paper we develop an evolutionary kernel-based time update algorithm to recursively estimate subset discrete lag models (including fullorder models) with a forgetting factor and a constant term, using the exactwindowed case. The algorithm applies to causality detection when the true relationship occurs with a continuous or a random delay. We then demonstrate the use of the proposed evolutionary algorithm to study the monthly mutual fund data, which come from the 'CRSP Survivor-bias free US Mutual Fund Database'. The results show that the NAV is an influential player on the international stage of global bond and stock markets.
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulations are used for investigating the impact of external noise. Results of sensitivity analysis are consistent with those obtained by stochastic simulations. Stochastic models with external noise can be used for studying the robustness not only to external noise but also to parameter variations. For external noise we also use stochastic models to study the robustness of the function of each gene and that of the system.
Resumo:
A field study in three vineyards in southern Queensland (Australia) was carried out to develop predictive models for individual leaf area and shoot leaf area of two cultivars (Cabernet Sauvignon and Shiraz) of grapevines (Vitis Vinifera L.). Digital image analysis was used to measure leaf vein length and leaf area. Stepwise regressions of untransformed and transformed models consisting of up to six predictor variables for leaf area and three predictor variables for shoot leaf area were carried out to obtain the most efficient models. High correlation coefficients were found for log10 transformed individual leaf and shoot leaf area models. The significance of predictor variables in the models varied across vineyards and cultivars, demonstrating the discontinuous and heterogeneous nature of vineyards. The application of this work in a grapevine modeling environment and in a dynamic vineyard management context are discussed. Sample sizes for quantification of individual leaf areas and areas of leaves on shoots are proposed based on target margins of errors of sampled data.
Resumo:
We consider return-to-zero (RZ) pulses with random phase modulation propagating in a nonlinear channel (modelled by the integrable nonlinear Schrödinger equation, NLSE). We suggest two different models for the phase fluctuations of the optical field: (i) Gaussian short-correlated fluctuations and (ii) generalized telegraph process. Using the rectangular-shaped pulse form we demonstrate that the presence of phase fluctuations of both types strongly influences the number of solitons generated in the channel. It is also shown that increasing the correlation time for the random phase fluctuations affects the coherent content of a pulse in a non-trivial way. The result obtained has potential consequences for all-optical processing and design of optical decision elements.
Resumo:
Much of the geometrical data relating to engineering components and assemblies is stored in the form of orthographic views, either on paper or computer files. For various engineering applications, however, it is necessary to describe objects in formal geometric modelling terms. The work reported in this thesis is concerned with the development and implementation of concepts and algorithms for the automatic interpretation of orthographic views as solid models. The various rules and conventions associated with engineering drawings are reviewed and several geometric modelling representations are briefly examined. A review of existing techniques for the automatic, and semi-automatic, interpretation of engineering drawings as solid models is given. A new theoretical approach is then presented and discussed. The author shows how the implementation of such an approach for uniform thickness objects may be extended to more general objects by introducing the concept of `approximation models'. Means by which the quality of the transformations is monitored, are also described. Detailed descriptions of the interpretation algorithms and the software package that were developed for this project are given. The process is then illustrated by a number of practical examples. Finally, the thesis concludes that, using the techniques developed, a substantial percentage of drawings of engineering components could be converted into geometric models with a specific degree of accuracy. This degree is indicative of the suitability of the model for a particular application. Further work on important details is required before a commercially acceptable package is produced.
Resumo:
Corporate restructuring is perceived as a challenge to research. Prior studies do not provide conclusive evidence regarding the effects of restructuring. Since there are discernible findings, this research attempts to examine the effects of restructuring events amongst the UK listed firms. The sample firms are listed in the LSE and London AIM stock exchange. Only completed restructuring transactions are included in the study. The time horizon extends from year 1999 to 2003. A three-year floating window is assigned to examine the sample firms. The key enquiry is to scrutinise the ex post effects of restructuring on performance and value measures of firms with contrast to a matched criteria non-restructured sample. A cross sectional study employing logit estimate is undertaken to examine firm characteristics of restructuring samples. Further, additional parameters, i.e. Conditional Volatility and Asymmetry are generated under the GJR-GARCH estimate and reiterated in logit models to capture time-varying heteroscedasticity of the samples. This research incorporates most forms of restructurings, while prior studies have examined certain forms of restructuring. Particularly, these studies have made limited attempts to examine different restructuring events simultaneously. In addition to logit analysis, an event study is adopted to evaluate the announcement effect of restructuring under both the OLS and GJR-GARCH estimate supplementing our prior results. By engaging a composite empirical framework, our estimation method validates a full appreciation of restructuring effect. The study provides evidence that restructurings indicate non-trivial significant positive effect. There are some evidences that the response differs because of the types of restructuring, particularly while event study is applied. The results establish that performance measures, i.e. Operating Profit Margin, Return on Equity, Return on Assets, Growth, Size, Profit Margin and Shareholders' Ownership indicate consistent and significant increase. However, Leverage and Asset Turn Over suggest reasonable influence on restructuring across the sample period. Similarly, value measures, i.e. Abnormal Returns, Return on Equity and Cash Flow Margin suggest sizeable improvement. A notable characteristic seen coherently throughout the analysis is the decreasing proportion of Systematic Risk. Consistent with these findings, Conditional Volatility and Asymmetry exhibit similar trend. The event study analysis suggests that on an average market perceives restructuring favourably and shareholders experience significant and systematic positive gain.
Resumo:
A multiwavelength generation in a random distributed feedback fiber laser based on hybrid Raman and erbium gain and a Lyot all-fiber spectral filter is demonstrated for the first time. The use of erbium-doped fiber allows a multi-wavelength generation to be achieved at lower pump powers in comparison with random fiber lasers based on Raman gain only. The operating bandwidth and flatness of power distribution between different lines in generation are also improved in the hybrid gain configuration.
Resumo:
Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.
Resumo:
This article applies a multinomial logit estimator to investigate which factors affect SME owners' expectations to grow their businesses in Lithuania. Our findings provide evidence that SME owners' human capital (education) matters and that growth expectations are positively related to exporting. In addition, we analyse the link between the perceptions of business constraints and growth expectations and find that the factors, which are perceived as main business barriers, are not necessarily those which are associated with reduced growth expectations. However, perceptions of corruption seem to affect growth expectations the most.
Resumo:
We use non-parametric procedures to identify breaks in the underlying series of UK household sector money demand functions. Money demand functions are estimated using cointegration techniques and by employing both the Simple Sum and Divisia measures of money. P-star models are also estimated for out-of-sample inflation forecasting. Our findings suggest that the presence of breaks affects both the estimation of cointegrated money demand functions and the inflation forecasts. P-star forecast models based on Divisia measures appear more accurate at longer horizons and the majority of models with fundamentals perform better than a random walk model.
Resumo:
We present exact analytical results for the statistics of nonlinear coupled oscillators under the influence of additive white noise. We suggest a perturbative approach for analysing the statistics of such systems under the action of a deterministic perturbation, based on the exact expressions for probability density functions for noise-driven oscillators. Using our perturbation technique we show that our results can be applied to studying the optical signal propagation in noisy fibres at (nearly) zero dispersion as well as to weakly nonlinear lattice models with additive noise. The approach proposed can account for a wide spectrum of physically meaningful perturbations and is applicable to the case of large noise strength. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006