883 resultados para Multimodal retrieval
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
A chip shooter machine in printed circuit board (PCB) assembly has three movable mechanisms: an X-Y table carrying a PCB, a feeder carrier with several feeders holding components and a rotary turret with multiple assembly heads to pick up and place components. In order to get the minimal placement or assembly time for a PCB on the machine, all the components on the board should be placed in a perfect sequence, and the components should be set up on a right feeder, or feeders since two feeders can hold the same type of components, and additionally, the assembly head should retrieve or pick up a component from a right feeder. The entire problem is very complicated, and this paper presents a genetic algorithm approach to tackle it.
Resumo:
The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.
Resumo:
Owing to the rise in the volume of literature, problems arise in the retrieval of required information. Various retrieval strategies have been proposed, but most of that are not flexible enough for their users. Specifically, most of these systems assume that users know exactly what they are looking for before approaching the system, and that users are able to precisely express their information needs according to l aid- down specifications. There has, however, been described a retrieval program THOMAS which aims at satisfying incompletely- defined user needs through a man- machine dialogue which does not require any rigid queries. Unlike most systems, Thomas attempts to satisfy the user's needs from a model which it builds of the user's area of interest. This model is a subset of the program's "world model" - a database in the form of a network where the nodes represent concepts since various concepts have various degrees of similarities and associations, this thesis contends that instead of models which assume equal levels of similarities between concepts, the links between the concepts should have values assigned to them to indicate the degree of similarity between the concepts. Furthermore, the world model of the system should be structured such that concepts which are related to one another be clustered together, so that a user- interaction would involve only the relevant clusters rather than the entire database such clusters being determined by the system, not the user. This thesis also attempts to link the design work with the current notion in psychology centred on the use of the computer to simulate human cognitive processes. In this case, an attempt has been made to model a dialogue between two people - the information seeker and the information expert. The system, called Thomas-II, has been implemented and found to require less effort from the user than Thomas.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.
Resumo:
Evidence-based medicine relies on repositories of empirical research evidence that can be used to support clinical decision making for improved patient care. However, retrieving evidence from such repositories at local sites presents many challenges. This paper describes a methodological framework for automatically indexing and retrieving empirical research evidence in the form of the systematic reviews and associated studies from The Cochrane Library, where retrieved documents are specific to a patient-physician encounter and thus can be used to support evidence-based decision making at the point of care. Such an encounter is defined by three pertinent groups of concepts - diagnosis, treatment, and patient, and the framework relies on these three groups to steer indexing and retrieval of reviews and associated studies. An evaluation of the indexing and retrieval components of the proposed framework was performed using documents relevant for the pediatric asthma domain. Precision and recall values for automatic indexing of systematic reviews and associated studies were 0.93 and 0.87, and 0.81 and 0.56, respectively. Moreover, precision and recall for the retrieval of relevant systematic reviews and associated studies were 0.89 and 0.81, and 0.92 and 0.89, respectively. With minor modifications, the proposed methodological framework can be customized for other evidence repositories. © 2010 Elsevier Inc.
Resumo:
Evaluation and benchmarking in content-based image retrieval has always been a somewhat neglected research area, making it difficult to judge the efficacy of many presented approaches. In this paper we investigate the issue of benchmarking for colour-based image retrieval systems, which enable users to retrieve images from a database based on lowlevel colour content alone. We argue that current image retrieval evaluation methods are not suited to benchmarking colour-based image retrieval systems, due in main to not allowing users to reflect upon the suitability of retrieved images within the context of a creative project and their reliance on highly subjective ground-truths. As a solution to these issues, the research presented here introduces the Mosaic Test for evaluating colour-based image retrieval systems, in which test-users are asked to create an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. We report on our findings from a user study which suggests that the Mosaic Test overcomes the major drawbacks associated with existing image retrieval evaluation methods, by enabling users to reflect upon image selections and automatically measuring image relevance in a way that correlates with the perception of many human assessors. We therefore propose that the Mosaic Test be adopted as a standardised benchmark for evaluating and comparing colour-based image retrieval systems.
Resumo:
This paper summarizes the scientific work presented at the 32nd European Conference on Information Retrieval. It demonstrates that information retrieval (IR) as a research area continues to thrive with progress being made in three complementary sub-fields, namely IR theory and formal methods together with indexing and query representation issues, furthermore Web IR as a primary application area and finally research into evaluation methods and metrics. It is the combination of these areas that gives IR its solid scientific foundations. The paper also illustrates that significant progress has been made in other areas of IR. The keynote speakers addressed three such subject fields, social search engines using personalization and recommendation technologies, the renewed interest in applying natural language processing to IR, and multimedia IR as another fast-growing area.