969 resultados para Multi-frequency Bioimpedance
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
This paper presents a performance-based optimisation approach for conducting trade-off analysis between safety (roads) and condition (bridges and roads). Safety was based on potential for improvement (PFI). Road condition was based on surface distresses and bridge condition was based on apparent age per subcomponent. The analysis uses a non-monetised optimisation that expanded upon classical Pareto optimality by observing performance across time. It was found that achievement of good results was conditioned by the availability of early age treatments and impacted by a frontier effect preventing the optimisation algorithm from realising of the long-term benefits of deploying actions when approaching the end of the analysis period. A disaggregated bridge condition index proved capable of improving levels of service in bridge subcomponents.
Resumo:
Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases. Furthermore, certain applications require this type of registration to operate across images acquired from different imaging modalities. One popular local approach for estimating this registration is a block matching procedure utilising the mutual information criterion. However, previous block matching procedures generate a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. This paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo statistical procedure to optimally select grid points of interest. Three different methods are then compared to propagate the estimated sparse deformation field to the entire image including a thin-plate spline warp, Gaussian convolution, and a hybrid fluid technique. Results show that non-rigid registration can be improved by using the proposed algorithm to optimally select grid points of interest.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
Successful management of design changes is critical for the efficient delivery of construction projects. Building Information Modeling (BIM) is envisioned to play an important role in integrating design, construction and facility management processes through coordinated changes throughout the project life-cycle. BIM currently provides significant benefits in coordinating changes across different views in a single model, and identifying conflicts between different discipline-specific models. However, current BIM tools provide limited support in managing changes across several discipline-specific models. This paper describes an approach to represent, coordinate, and track changes within a collaborative multi-disciplinary BIM environment. This approach was informed by a detailed case study of a large, complex, fast-tracked BIM project where we investigated numerous design changes, analyzed change management processes, and evaluated existing BIM tools. Our approach characterises design changes in an ontology to represent changed component attributes, dependencies between components, and change impacts. It explores different types of dependencies amongst different design changes and describes how a graph based approach and dependency matrix could assist with automating the propagation and impact of changes in a BIM-based project delivery process.
Resumo:
Large concentrations of magnetite in sedimentary deposits and soils with igneous parent material have been reported to affect geophysical sensor performance. We have undertaken the first systematic experimental effort to understand the effects of magnetite for ground-penetrating radar (GPR) characterization of the shallow subsurface. Laboratory experiments were conducted to study how homogeneous magnetite-sand mixtures and magnetite concentrated in layers affect the propagation behavior (velocity, attenuation) of high-frequency GPR waves and the reflection characteristics of a buried target. Important observations were that magnetite had a strong effect on signal velocity and reflection, at magnitudes comparable to what has been observed in small-scale laboratory experiments that measured electromagnetic properties of magnetite-silica mixtures. Magnetite also altered signal attenuation and affected the reflection characteristics of buried targets. Our results indicated important implications for several fields, including land mine detection, Martian exploration, engineering, and moisture mapping using satellite remote sensing and radiometers.
Resumo:
Soils at many locations that have their origin in volcanic parent material and have undergone extensive weathering often exhibit strong frequency-dependent magnetic susceptibilities. The presence of such susceptibility has a profound effect on electromagnetic induction data acquired in such environments. Their transient electromagnetic response is characterized by a t-1 decay that is strong enough to mask UXO responses. In a field study and associated laboratory work on characterizing the frequency-dependent magnetic susceptibility and its influence on transient electromagnetic data, we collected soil samples on the surface and in soil pits from the Island of Kaho'olawe, Hawaii, and measured their frequency dependent magnetic susceptibilities. We present the details of the field investigation, confirm previous theoretical work with field and laboratory measurements, characterize the susceptibility with a Cole-Cole model, and investigate the response specific to the measured susceptibility.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among them, CVTree method, feature frequency profiles method and dynamical language approach were used to investigate the whole-proteome phylogeny of large dsDNA viruses. Using the data set of large dsDNA viruses from Gao and Qi (BMC Evol. Biol. 2007), the phylogenetic results based on the CVTree method and the dynamical language approach were compared in Yu et al. (BMC Evol. Biol. 2010). In this paper, we first apply dynamical language approach to the data set of large dsDNA viruses from Wu et al. (Proc. Natl. Acad. Sci. USA 2009) and compare our phylogenetic results with those based on the feature frequency profiles method. Then we construct the whole-proteome phylogeny of the larger dataset combining the above two data sets. According to the report of The International Committee on the Taxonomy of Viruses (ICTV), the trees from our analyses are in good agreement to the latest classification of large dsDNA viruses.