840 resultados para Moving Image
Resumo:
1. Population growth rate (PGR) is central to the theory of population ecology and is crucial for projecting population trends in conservation biology, pest management and wildlife harvesting. Furthermore, PGR is increasingly used to assess the effects of stressors. Image analysis that can automatically count and measure photographed individuals offers a potential methodology for estimating PGR. 2. This study evaluated two ways in which the PGR of Daphnia magna, exposed to different stressors, can be estimated using an image analysis system. The first method estimated PGR as the ratio of counts of individuals obtained at two different times, while the second method estimated PGR as the ratio of population sizes at two different times, where size is measured by the sum of the individuals' surface areas, i.e. total population surface area. This method is attractive if surface area is correlated with reproductive value (RV), as it is for D. magna, because of the theoretical result that PGR is the rate at which the population RV increases. 3. The image analysis system proved reliable and reproducible in counting populations of up to 440 individuals in 5 L of water. Image counts correlated well with manual counts but with a systematic underestimate of about 30%. This does not affect accuracy when estimating PGR as the ratio of two counts. Area estimates of PGR correlated well with count estimates, but were systematically higher, possibly reflecting their greater accuracy in the study situation. 4. Analysis of relevant scenarios suggested the correlation between RV and body size will generally be good for organisms in which fecundity correlates with body size. In these circumstances, area estimation of PGR is theoretically better than count estimation. 5. Synthesis and applications. There are both theoretical and practical advantages to area estimation of population growth rate when individuals' reproductive values are consistently well correlated with their surface areas. Because stressors may affect both the number and quality of individuals, area estimation of population growth rate should improve the accuracy of predicting stress impacts at the population level.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
Intertwining triple helical nanofibers with an overall handedness have been formed from self-assembling chiral benzene-1,3,5-tricarboxamides 1, 2 and 3, whereas the achiralbenzene-1,3,5-tricarboxamide 4 upon self-association gives rise to straight nanofibers without any twist and transmission electron microscopy images of chiral compounds clearly demonstrate that the handedness of the triple helical nanofibers can be reversed by using the enantiomeric benzene-1,3,5-tricarboxamide building blocks.
Resumo:
Europe's commitment to language learning has resulted in higher percentages of pupils studying foreign languages during primary education. In England, recent policy decisions to expand foreign language learning at primary level by 2010 create major implications for transition to secondary. This paper presents findings on transition issues from case studies of a DfES-funded project evaluating 19 local authority Pathfinders piloting the introduction of foreign language learning at primary level. Research on transition in other countries sets these findings in context. Finally, it investigates the challenges England faces for transition in the light of this expansion and discusses future implications.
Resumo:
The distributions of times to first cell division were determined for populations of Escherichia coli stationary-phase cells inoculated onto agar media. This was accomplished by using automated analysis of digital images of individual cells growing on agar and calculation of the "box area ratio." Using approximately 300 cells per experiment, the mean time to first division and standard deviation for cells grown in liquid medium at 37 degrees C and inoculated on agar and incubated at 20 degrees C were determined as 3.0 h and 0.7 h, respectively. Distributions were observed to tail toward the higher values, but no definitive model distribution was identified. Both preinoculation stress by heating cultures at 50 degrees C and postinoculation stress by growth in the presence of higher concentrations of NaCl increased mean times to first division. Both stresses also resulted in an increase in the spread of the distributions that was proportional to the mean division time, the coefficient of variation being constant at approximately 0.2 in all cases. The "relative division time," which is the time to first division for individual cells expressed in terms of the cell size doubling time, was used as measure of the "work to be done" to prepare for cell division. Relative division times were greater for heat-stressed cells than for those growing under osmotic stress.
Resumo:
A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Eye-movements have long been considered a problem when trying to understand the visual control of locomotion. They transform the retinal image from a simple expanding pattern of moving texture elements (pure optic flow), into a complex combination of translation and rotation components (retinal flow). In this article we investigate whether there are measurable advantages to having an active free gaze, over a static gaze or tracking gaze, when steering along a winding path. We also examine patterns of free gaze behavior to determine preferred gaze strategies during active locomotion. Participants were asked to steer along a computer-simulated textured roadway with free gaze, fixed gaze, or gaze tracking the center of the roadway. Deviation of position from the center of the road was recorded along with their point of gaze. It was found that visually tracking the middle of the road produced smaller steering errors than for fixed gaze. Participants performed best at the steering task when allowed to sample naturally from the road ahead with free gaze. There was some variation in the gaze strategies used, but sampling was predominantly of areas proximal to the center of the road. These results diverge from traditional models of flow analysis.
Resumo:
This article explores whether infants are able to learn words as rapidly as has been reported for preschoolers. Sixty-four infants aged 1;6 were taught labels for either two moving images or two still images. Each image-label pair was presented three times, after which comprehension was assessed using an adaptation of the intermodal preferential looking paradigm. Three repetitions of each label were found to be sufficient for learning to occur, fewer than has previously been reported for infants under two years. Moreover, contrary to a previous finding, learning was equally rapid for infants who were taught labels for moving versus still images. The findings indicate that infants in the early stages of acquiring a vocabulary learn new word-referent associations with ease, and that the learning conditions that allow such learning are less restricted that was previously believed.
Resumo:
We examined whether it is possible to identify the emotional content of behaviour from point-light displays where pairs of actors are engaged in interpersonal communication. These actors displayed a series of emotions, which included sadness, anger, joy, disgust, fear, and romantic love. In experiment 1, subjects viewed brief clips of these point-light displays presented the right way up and upside down. In experiment 2, the importance of the interaction between the two figures in the recognition of emotion was examined. Subjects were shown upright versions of (i) the original pairs (dyads), (ii) a single actor (monad), and (iii) a dyad comprising a single actor and his/her mirror image (reflected dyad). In each experiment, the subjects rated the emotional content of the displays by moving a slider along a horizontal scale. All of the emotions received a rating for every clip. In experiment 1, when the displays were upright, the correct emotions were identified in each case except disgust; but, when the displays were inverted, performance was significantly diminished for some ernotions. In experiment 2, the recognition of love and joy was impaired by the absence of the acting partner, and the recognition of sadness, joy, and fear was impaired in the non-veridical (mirror image) displays. These findings both support and extend previous research by showing that biological motion is sufficient for the perception of emotion, although inversion affects performance. Moreover, emotion perception from biological motion can be affected by the veridical or non-veridical social context within the displays.
Resumo:
Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.
Resumo:
In this paper, a forward-looking infrared (FLIR) video surveillance system is presented for collision avoidance of moving ships to bridge piers. An image pre-processing algorithm is proposed to reduce clutter noises by multi-scale fractal analysis, in which the blanket method is used for fractal feature computation. Then, the moving ship detection algorithm is developed from image differentials of the fractal feature in the region of surveillance between regularly interval frames. Experimental results have shown that the approach is feasible and effective. It has achieved real-time and reliable alert to avoid collisions of moving ships to bridge piers