1000 resultados para Mortalidad Post-Neonatal
Resumo:
Epidemiological studies indicate that children born small for gestational age (SGA) have an increased risk of metabolic and cardiovascular disorders as adults. This suggests that foetal undernutrition leads to permanent metabolic alterations, which predispose to metabolic abnormalities upon exposure to environmental factors such as low physical activity and/or high-energy intake in later life (thrifty phenotype hypothesis). However, this relationship is not restricted to foetal undernutrition or intrauterine growth retardation, but is also found for children born premature, or for high birth weight children. Furthermore, early post-natal nutrition, and more specifically catch-up growth, appear to modulate cardiovascular risk as well. Intrauterine growth retardation can be induced in animal models by energy/protein restriction, or ligation of uterine arteries. In such models, altered glucose homeostasis, including low beta-cell mass, low insulin secretion and insulin resistance is observed after a few weeks of age. In humans, several studies have confirmed that children born SGA have insulin resistance as adolescents and young adults. Alterations of glucose homeostasis and increased lipid oxidation can indeed be observed already in non-diabetic children born SGA at early pubertal stages. These children also have alterations of stature and changes in body composition (increased fat mass), which may contribute to the pathogenesis of insulin resistance. Permanent metabolic changes induced by foetal/early neonatal nutrition (metabolic inprinting) may involve modulation of gene expression through DNA methylation, or alterations of organ structure. It is also possible that events occurring during foetal/neonatal development lead to long-lasting alterations of the hypothalamo-pituitary-adrenal axis or the hypothalamo-pituitary-insulin-like growth factor-1 axis.
Resumo:
Obesity, insulin resistance and associated cardiovascular complications are reaching epidemic proportions worldwide and represent a major public health problem. Over the past decade, evidence has accumulated indicating that insulin administration, in addition to its metabolic effects, also has important cardiovascular actions. The sympathetic nervous system and the L-arginine-nitric oxide pathway are the central players in the mediation of insulin's cardiovascular actions. Based on recent animal and human research, we demonstrate that both defective and augmented NO synthesis represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states. These observations provide the rationale for the use of pharmaceutical drugs releasing small and physiological amounts of NO and/or inhibitors of NO overproduction as a future treatment for insulin resistance and associated comorbidities.
Resumo:
The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post-reproductive lifespan. Moreover, most studies have examined long-established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non-laboratory-adapted wild populations of D. melanogaster. Populations varied in a number of life-history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age-specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post-ovipository period. Individual females exhibited clear-cut fecundity peaks, which contrasts with previous analyses, and post-peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post-reproductive lifespan, which on average made up 40% of total lifespan. Post-reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random 'add-on' at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life-history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.
Resumo:
Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.
Resumo:
OBJECTIVE: HIV-1 post-exposure prophylaxis (PEP) is frequently prescribed after exposure to source persons with an undetermined HIV serostatus. To reduce unnecessary use of PEP, we implemented a policy including active contacting of source persons and the availability of free, anonymous HIV testing ('PEP policy'). METHODS: All consultations for potential non-occupational HIV exposures i.e. outside the medical environment) were prospectively recorded. The impact of the PEP policy on PEP prescription and costs was analysed and modelled. RESULTS: Among 146 putative exposures, 47 involved a source person already known to be HIV positive and 23 had no indication for PEP. The remaining 76 exposures involved a source person of unknown HIV serostatus. Of 33 (43.4%) exposures for which the source person could be contacted and tested, PEP was avoided in 24 (72.7%), initiated and discontinued in seven (21.2%), and prescribed and completed in two (6.1%). In contrast, of 43 (56.6%) exposures for which the source person could not be tested, PEP was prescribed in 35 (81.4%), P < 0.001. Upon modelling, the PEP policy allowed a 31% reduction of cost for management of exposures to source persons of unknown HIV serostatus. The policy was cost-saving for HIV prevalence of up to 70% in the source population. The availability of all the source persons for testing would have reduced cost by 64%. CONCLUSION: In the management of non-occupational HIV exposures, active contacting and free, anonymous testing of source persons proved feasible. This policy resulted in a decrease in prescription of PEP, proved to be cost-saving, and presumably helped to avoid unnecessary toxicity and psychological stress.
Resumo:
In a randomised trial comparing early enteral feeding by gastric and post-pyloric routes, White and colleagues have shown that gastric feeding is possible and efficient in the vast majority of critically ill patients. But the authors' conclusion that gastric is equivalent to post-pyloric is true in only the least severe patients. Given the extra workload and costs, post-pyloric is now clearly indicated in case of gastric feeding failure.
Resumo:
La mise en place d'un suivi post-professionnel, par le médecin traitant, des travailleurs exposés à certaines substances toxiques à effets différés (agents cancérogènes et agents pneumoconiogènes) est indispensable. Toutefois, c'est encore un dispositif complexe actuellement sous-utilisé par les ex-salariés qui pourraient ou devraient en bénéficier.
Resumo:
NT-proBNP, a marker of cardiac failure, has been shown to be stable in post mortem samples. The aim of this study was to assess the accuracy of NT-proBNP to detect heart failure in the forensic setting. One hundred sixty-eight consecutive autopsies were included in the study. NT-proBNP blood concentrations were measured using a chemiluminescent immunoassay kit. Cardiac failure was assessed by three independent forensic experts using macro- and microscopic findings complemented by information about the circumstances of body discovery and the known medical story. Area under the receiving operator curve was of 65.4% (CI 95%, from 57.1 to 73.7). Using a standard cut-off value of >220 pg/mL for NT-proBNP blood concentration, heart failure was detected with a sensitivity of 50.7% and a specificity of 72.6%. NT-proBNP vitreous humor values were well correlated to the ones measured in blood (r (2) = 0.658). Our results showed that NT-proBNP can corroborate the pathological findings in cases of natural death related to heart failure, thus, keeping its diagnostic properties passing from the ante mortem to the post mortem setting. Therefore, biologically inactive polypeptides like NT-proBNP seem to be stable enough to be used in forensic medicine as markers of cardiac failure, taking into account the sensitivity and specificity of the test.
Resumo:
Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with "preceding performance" (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80-110 msec poststimulus onset and then as a function of stimulus type at 110-140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.