992 resultados para Monte Carlo.
Resumo:
The paper addresses the concept of multicointegration in panel data frame- work. The proposal builds upon the panel data cointegration procedures developed in Pedroni (2004), for which we compute the moments of the parametric statistics. When individuals are either cross-section independent or cross-section dependence can be re- moved by cross-section demeaning, our approach can be applied to the wider framework of mixed I(2) and I(1) stochastic processes analysis. The paper also deals with the issue of cross-section dependence using approximate common factor models. Finite sample performance is investigated through Monte Carlo simulations. Finally, we illustrate the use of the procedure investigating inventories, sales and production relationship for a panel of US industries.
Resumo:
Empirical studies have shown little evidence to support the presence of all unit roots present in the $^{\Delta_4}$ filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors $(1-L),(1+L),\bigg(1+L^2\bigg),\bigg(1-L^2\bigg) y \bigg(1+L+L^2+L^3\bigg)$ are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency $^{\pi/2}$ and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios $^{t_{{\hat\pi}_1}}$ and $^{t_{{\hat\pi}_2}}$ and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency $^{\pi/2}$.
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two interesting phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from three to two dimensions. The second phenomenon is due to the suppression of the effects of long-range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed different light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.
Resumo:
Coulomb suppression of shot noise in a ballistic diode connected to degenerate ideal contacts is analyzed in terms of the correlations taking place between current fluctuations due to carriers injected with different energies. By using Monte Carlo simulations we show that at low frequencies the origin of Coulomb suppression can be traced back to the negative correlations existing between electrons injected with an energy close to that of the potential barrier present in the diode active region and all other carriers injected with higher energies. Correlations between electrons with energy above the potential barrier with the rest of electrons are found to influence significantly the spectra at high frequency in the cutoff region.
Resumo:
The paper addresses the concept of multicointegration in panel data frame- work. The proposal builds upon the panel data cointegration procedures developed in Pedroni (2004), for which we compute the moments of the parametric statistics. When individuals are either cross-section independent or cross-section dependence can be re- moved by cross-section demeaning, our approach can be applied to the wider framework of mixed I(2) and I(1) stochastic processes analysis. The paper also deals with the issue of cross-section dependence using approximate common factor models. Finite sample performance is investigated through Monte Carlo simulations. Finally, we illustrate the use of the procedure investigating inventories, sales and production relationship for a panel of US industries.
Resumo:
Empirical studies have shown little evidence to support the presence of all unit roots present in the $^{\Delta_4}$ filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors $(1-L),(1+L),\bigg(1+L^2\bigg),\bigg(1-L^2\bigg) y \bigg(1+L+L^2+L^3\bigg)$ are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency $^{\pi/2}$ and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios $^{t_{{\hat\pi}_1}}$ and $^{t_{{\hat\pi}_2}}$ and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency $^{\pi/2}$.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
In this paper we analyse, using Monte Carlo simulation, the possible consequences of incorrect assumptions on the true structure of the random effects covariance matrix and the true correlation pattern of residuals, over the performance of an estimation method for nonlinear mixed models. The procedure under study is the well known linearization method due to Lindstrom and Bates (1990), implemented in the nlme library of S-Plus and R. Its performance is studied in terms of bias, mean square error (MSE), and true coverage of the associated asymptotic confidence intervals. Ignoring other criteria like the convenience of avoiding over parameterised models, it seems worst to erroneously assume some structure than do not assume any structure when this would be adequate.
Resumo:
Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Ising model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed. Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usual Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacancy trapping in the ordered regions. By measuring local order parameters we show that the vacancy prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism that causes jumps to be homogeneously distributed on the lattice.
Resumo:
The optimization of the extremity dosimetry of medical staff in nuclear medicine was the aim of the Work Package 4 (WP4) of the ORAMED project, a Collaborative Project (2008-2011) supported by the European Commission within its 7th Framework Programme. Hand doses and dose distributions across the hands of medical staff working in nuclear medicine departments were evaluated through an extensive measurement program involving 32 hospitals in Europe and 139 monitored workers. The study included the most frequently used radionuclides, (99m)Tc- and (18)F-labelled radiopharmaceuticals for diagnostic and (90)Y-labelled Zevalin (R) and DOTATOC for therapy. Furthermore, Monte Carlo simulations were performed in different predefined scenarios to evaluate separately the efficacy of different radiation protection measures by comparing hand dose distributions according to various parameters. The present work gives recommendations based on results obtained with both measurements and simulations. This results in nine practical recommendations regarding the positioning of the dosemeters for an appropriate skin dose monitoring and the best protection means to reduce the personnel exposure.
Resumo:
In a recent paper [Phys. Rev. B 50, 3477 (1994)], P. Fratzl and O. Penrose present the results of the Monte Carlo simulation of the spinodal decomposition problem (phase separation) using the vacancy dynamics mechanism. They observe that the t1/3 growth regime is reached faster than when using the standard Kawasaki dynamics. In this Comment we provide a simple explanation for the phenomenon based on the role of interface diffusion, which they claim is irrelevant for the observed behavior.
Resumo:
We present a lattice model to study the equilibrium phase diagram of ordered alloys with one magnetic component that exhibits a low temperature phase separation between paramagnetic and ferromagnetic phases. The model is constructed from the experimental facts observed in Cu3-xAlMnx and it includes coupling between configurational and magnetic degrees of freedom that are appropriate for reproducing the low temperature miscibility gap. The essential ingredient for the occurrence of such a coexistence region is the development of ferromagnetic order induced by the long-range atomic order of the magnetic component. A comparative study of both mean-field and Monte Carlo solutions is presented. Moreover, the model may enable the study of the structure of ferromagnetic domains embedded in the nonmagnetic matrix. This is relevant in relation to phenomena such as magnetoresistance and paramagnetism