950 resultados para Molybdenum in the soil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between plant species diversity, productivity and the development of the soil community during early secondary succession on former arable land across Europe is investigated. The enhancement of biomass production due to the increase in initial plant species diversity and the consequent stimulation of soil microbial biomass and abundance of soil invertebrates are examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been observed in the present study that when spores of Trichoderma harzianum (Th-2) isolate were applied in the sandy clay loam soil and continuously incubated for 4 months at 25 degrees C and 35 degrees C and at three water potentials, -0.03 MPa, -0.3 MPa and <-50 MPa, it has resulted in significantly reduced (P<0.05), growth of Fusarium oxysporum ciceri (Foc) on branches of chickpea plant. The pathogen population was greatly reduced in the moist soil (43 MPa) when compared with the wet soil (-0.03 MPa) at both temperatures which was indicated by greater colonization and growth of T. harzanum-2 on the branch pieces of chickpea plants. The pathogen was completely eradicated from the chickpea branch pieces, after 6 months at 35 degrees C in the moist soil. In air-dry soil (<-50 MPa), Foc survived in 100% of the branch pieces even after 6 months at both temperatures. When chickpea plant branch pieces having pathogen was sprayed with Th-2 antagonistic isolates of Trichoderma spp., the Th-2 isolate killed the pathogen up to minimum level (10-12%) after 5 months at 35 degrees C in the sandy clay loam soil. It can be concluded that in chickpea growing rainfed areas of Pakistan having sandy clay loam soil, Foc can be controlled by using specific Trichoderma spp., especially in the summer season as after harvest of the crop the temperature increased up and there is rainfall during this period which makes the soil moist. This practice will be able to reduce the inoculum of Foc during this hot period as field remain fallow till next crop is sown in most of the chickpea growing rainfed areas of Pakistan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted in the forest-steppe region of the Loess Plateau to provide insight into the factors affecting the process of vegetation establishment, and to provide recommendations for the selection of indigenous species in order to speed up the succession process and to allow the establishment of vegetation more resistant to soil erosion. Four distinctive vegetation types were identified, and their distribution was affected not only by the time since abandonment but also by other environmental factors, mainly soil water and total P in the upper soil layers. One of the vegetation types, dominated by Artemisia scoparia, formed the early successional stage after abandonment while the other three types formed later successional stages with their distribution determined by the soil water content and total P. It can be concluded that the selection of appropriate species for introduction to accelerate succession should be determined by the local conditions and especially the total P concentration and soil water content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Browse plants play an important role in providing feed for livestock in semi-arid rangelands of Africa. Chemical composition and in vitro ruminal fermentation of leaves collected from Acacia burkei, Acacia tortilis, Acacia nilotica, Dichrostachys cinerea and Ehretia obtusifolia in communal grazing lands in the lowveld of Swaziland is presented. Leaves were collected from trees located on two soil types (i.e., lithosol and vertisol) in the communal land but it had no effect on the chemical composition of tree leaves. The NDFom and ADFom content were highest in D. cinerea and A. burkei and lowest in E. obtusifolia and A. nilotica. Crude protein (CP) contents ranged between 108 g/kg and 122 g/kg DM. D. cinerea had the highest Ca and Mg content, while A. tortilis had the lowest. There were marked variations in K level amongst browse species, with A. tortilis (9.1 g/kg DM) having the highest value. The P, Zn and Fe did not differ between browse species. Soil type and tree species interaction impacted in vitro fermentation parameters. Extent of fermentation, as measured by 48 h cumulative gas production, and organic matter degradability was highest in E. obtusifolia leaves and lowest in D. cinerea leaves within soil type. Fermentation efficiency, as measured by partitioning factors, was highest in A. nilotica leaves. Leaves of E. obtusifolia could be a valuable supplementary feedstuff for ruminant livestock due to its in vitro fermentation characteristics as well as low fibre and moderate CP levels. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last 60 years changes to the management of species-rich mesotrophic grasslands have resulted in the large-scale loss and degradation of this habitat across Europe. Restoration of such grasslands on agriculturally improved pastures provides a potentially valuable approach to the conservation of these threatened areas. Over a four-year period a replicated block design was used to test the effects of seed addition (green hay spreading and brush harvest collection) and soil disturbance on the restoration of phytophagous beetle and plant communities. Patterns of increasing restoration success, particularly where hay spreading and soil disturbance were used in combination, were identified for the phytophagous beetles. In the case of the plants, however, initial differences in restoration success in response to these same treatments were not followed by subsequent temporal changes in plant community similarity to target mesotrophic grassland. It is possible that the long-term consequences of the management treatments would not be the establishment of beetle and plant communities characteristic of the targets for restoration. Restoration management to enhance plant establishment using hay spreading and soil disturbance techniques would, however, still increase community similarity in both taxa to that of species-rich mesotrophic grasslands, and so raise their conservation value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive study was conducted to determine where in the production chain Rhizoctonia solani became associated with UK module-raised Brassica oleracea plants. In total, 2600 plants from 52 crops were sampled directly from propagators and repeat sampled from the field. Additional soil, compost and water samples were collected from propagation nurseries and screened using conventional agar isolation methods. No isolates of R. solani were recovered from any samples collected from propagation nurseries. Furthermore, nucleic acid preparations from samples of soil and compost from propagation nurseries gave negative results when tested for R. solani using real-time PCR. Conversely, R. solani was recovered from 116 of 1300 stem bases collected from field crops. All the data collected suggested R. solani became associated with B. oleracea in the field rather than during propagation. Parsimony and Bayesian phylogenetic studies of ribosomal DNA suggested the majority of further classified isolates belonged to anastomosis groups 2-1 (48/57) and AG-4HGII (8/57), groups known to be pathogenic on Brassica spp. in other countries. Many R. solani isolates were recovered from symptomless plant material and the possibilities for such an association are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site ( Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 mug g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic ( soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic ( surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant'' (e.g., Ceratophysella denticulata) and metal "sensitive'' (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 mug g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition("keystone species'') can be greatly reduced in numbers by pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through increases in net primary production (NPP), elevated CO2 is hypothesizes to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE) experiment near Bangor, Wales, 4 ambient CO2 and 4 FACE plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. Four years after establishment, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by FACE. We observed a decrease of leaf N content in Betula and Alnus under FACE, while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by FACE. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated CO2 at this site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42− additions. DOC release from the top 10 cm of the O-horizon of organo-mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42− l−1 sulphuric acid (H2SO4) and neutral sea-salt solutions (containing Na+, Mg2+, Cl−, SO42−) over a 20-hour extraction period. A significant decrease in the proportion of the acid-sensitive coloured aromatic humic acids (measured by specific ultra-violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42− additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O-horizon of organo-mineral soils and semi-confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42− additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil−air−plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil−air−plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log KOA > 9 and log KAW < −3. For those pollutants with log KOA < 9 and log KAW > −3 there was a higher deposition of pollutant via the soil−air−plant pathway than for those chemicals with log KOA > 9 and log KAW < −3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil−root−shoot pathway. The incorporation of the soil−air−plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log KOA. One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mediterranean species are popular landscape plants in the UK and well suited to the predicted climate change scenarios of hotter, drier summers. What is less clear is how these species will respond to the more unpredictable rainfall patterns also anticipated, where soil water-logging may become more prevalent, especially in urban environments where soil sealing can restrict drainage. Pot experiments on flooding of four Mediterranean species (Cistus × hybridus, Lavandula angustifolia ‘Munstead’, Salvia officinalis and Stachys byzantina) showed that the effects of waterlogging were only severe when the temperature was high and flooding prolonged. All plants survived the flooding in winter, but during the summer a 17-day flood resulted in the death of 30-40% of the Salvia officinalis and Cistus × hybridus. To examine the response of roots to oxygen deprivation over a range of conditions from total absence of oxygen (anoxia), low oxygen (hypoxia) and full aeration, rooted cuttings of Salvia officinalis were grown in a hydroponic-based system and mixtures of oxygen and nitrogen gases bubbled through the media. Anoxia was found to reduce root development dramatically. When the plants were subjected to a period of hypoxia they responded by increasing the production of lateral roots close to the surface thus enabling them to acclimate to subsequent anoxia. This greatly increased their chances of survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystems consist of aboveground and belowground subsystems and the structure of their communities is known to change with distance. However, most of this knowledge originates from visible, aboveground components, whereas relatively little is known about how soil community structure varies with distance and if this variability depends on the group of organisms considered. In the present study, we analyzed 30 grasslands from three neighboring chalk hill ridges in southern UK to determine the effect of geographic distance (1e198 km) on the similarity of bacterial communities and of nematode communities in the soil. We found that for both groups, community similarity decayed with distance and that this spatial pattern was not related to changes either in plant community composition or soil chemistry. Site history may have contributed to the observed pattern in the case of nematodes, since the distance effect depended on the presence of different nematode taxa at one of the hill ridges. On the other hand, site-related differences in bacterial community composition alone could not explain the spatial turnover, suggesting that other factors, such as biotic gradients and local dispersal processes that we did not include in our analysis, may be involved in the observed pattern. We conclude that, independently of the variety of causal factors that may be involved, the decay in similarity with geographic distance is a characteristic feature of both communities of soil bacteria and nematodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considered as one of the most available radionuclide in soileplant system, 36Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of 36Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of 36Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Striga hermonthica and Striga asiatica are obligate root parasites that cause serious problems in the production of staple cereal crops in Africa. Because of the high levels of infestation, there is an urgent need to control these weeds. A potentially useful control option is depletion of the soil seed bank by suicidal germination, which involves germination of the seeds in the absence of host plants. Suicidal germination is often mentioned in the literature, but not considered realistic, because of the alleged untimely decomposition of the stimulants in the soil, despite the fact that some encouraging results were reported around 1980. The alleged instability has prevented active research in this direction for the past 20–25 years. Five newly designed synthetic germination stimulants were investigated as candidates for suicidal germination. An important issue is the persistence of these stimulants in soil. Packets with Striga spp. seeds were put in pots with soil and then treated with aqueous solutions of the stimulants. All five compounds induced germination under these conditions, with percentages varying between 18% and 98% depending on stimulant and species. There were no noticeable signs of decomposition of the stimulants. The best performing stimulant is derived from 1-tetralone. We conclude that synthetic strigolactones analogues have excellent prospects for use in combating parasitic weeds. Further testing will be needed to evaluate whether such prospects can be realised in the field.