922 resultados para Mixed model equations
Resumo:
In the present work, we expanded the study done by Solorzanol(1) including the eccentricity of the perturbing body. The assumptions used to develop the single-averaged analytical model are the same ones of the restricted elliptic three-body problem. The disturbing function was expanded in Legendre polynomials up to fourth-order. After that, the equations of motion are obtained from the planetary equations and we performed a set of numerical simulations. Different initial eccentricities for the perturbing and perturbed body are considered. The results obtained perform an analysis of the stability of a near-circular orbits and investigate under which conditions this orbit remain near-circular.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that the 2-matrix string model corresponds to a coupled system of 2 + 1-dimensional KP and modified KP ((m)KP2+1) integrable equations subject to a specific symmetry constraint. The latter together with the Miura-Konopelchenko map for (m)KP2+1 are the continuum incarnation of the matrix string equation. The (m)KP2+1 Miura and Backhand transformations are natural consequences of the underlying lattice structure. The constrained (m)KP2+1 system is equivalent to a 1 + 1-dimensional generalized KP-KdV hierarchy related to graded SL(3,1). We provide an explicit representation of this hierarchy, including the associated W(2,1)-algebra of the second Hamiltonian structure, in terms of free currents.
Resumo:
The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.
Resumo:
We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.
Resumo:
Water waves generated by a solid mass is a complex phenomenon discussed in this paper by numerical and experimental approaches. A model based on shallow water equations with shocks (Saint Venant) has developed. It can reproduce the amplitude and the energy of the wave quite well, but because it consistently generates a hydraulic jump, it is able to reproduce the profile, in the case of high relative thickness of slide, but in the case of small relative thickness it is unable to reproduce the amplitude of the wave. As the momentum conservation is not verified during the phase of wave creation, a second technique based on discharge transfer coefficient α, is introduced at the zone of impact. Numerical tests have been performed and validated this technique from the experimental results of the wave's height obtained in a flume.
Resumo:
In this paper we introduce a current-current type interaction term in the Lagrangian density of gravity coupled to complex scalar fields, in the presence of a degenerated Fermi gas. For low transferred momenta, such a term, which might account for the interaction among boson and fermion constituents of compact stellar objects, is subsequently reduced to a quadratic one in the scalar sector. This procedure enforces the use of a complex radial field counterpart in the equations of motion. The real and the imaginary components of the scalar field exhibit different behavior as the interaction increases. The results also suggest that the Bose-Fermi system undergoes a phase transition for a suitable choice of the coupling constant.
Resumo:
We consider an integrable conformally invariant two-dimensional model associated to the affine Kac-Moody algebra sl3(ℂ). It possesses four scalar fields and six Dirac spinors. The theory does not possesses a local Lagrangian since the spinor equations of motion present interaction terms which are bilinear in the spinors. There exists a submodel presenting an equivalence between a U(1) vector current and a topological current, which leads to a confinement of the spinors inside the solitons. We calculate the one-soliton and two-soliton solutions using a procedure which is a hybrid of the dressing and Hirota methods. The soliton masses and time delays due to the soliton interactions are also calculated. We give a computer program to calculate the soliton solutions. © 2002 Published by Elsevier Science B.V.
Resumo:
Water waves generated by landslides were long menace in certain localities and the study of this phenomenon were carried out at an accelerated rate in the last decades. Nevertheless, the phase of wave creation was found to be very complex. As such, a numerical model based on Boussinesq equations was used to describe water waves generated by local disturbance. This numerical model takes in account the vertical acceleration of the particles and considers higher orders derivate terms previously neglected by Boussinesq, so that in the generation zone, this model can support high relative amplitude of waves.
Resumo:
Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, so it is not reasonable to assume independence between observations in the same cluster. In most biological applications, it is assumed that the distributions of the random effects and of the residuals are Gaussian. This makes inferences vulnerable to the presence of outliers. Here, linear mixed effects models with normal/independent residual distributions for robust inferences are described. Specific distributions examined include univariate and multivariate versions of the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted and Markov chain Monte Carlo is used to carry out the posterior analysis. The procedures are illustrated using birth weight data on rats in a texicological experiment. Results from the Gaussian and robust models are contrasted, and it is shown how the implementation can be used for outlier detection. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process in linear mixed models, and they are easily implemented using data augmentation and MCMC techniques.
Resumo:
A study was conducted on the interaction of two pulses in the nonlinear Schrodinger (NLS) model. The presence of different scenarios of the behavior depending on the initial parameters of the pulses, such as the pulse areas, the relative phase shift, the spatial and frequency separations were shown. It was observed that a pure real initial condition of the NLS equation can result in additional moving solitons.
Resumo:
This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).
Resumo:
In this work a new method is proposed of separated estimation for the ARMA spectral model based on the modified Yule-Walker equations and on the least squares method. The proposal of the new method consists of performing an AR filtering in the random process generated obtaining a new random estimate, which will reestimate the ARMA model parameters, given a better spectrum estimate. Some numerical examples will be presented in order to ilustrate the performance of the method proposed, which is evaluated by the relative error and the average variation coefficient.
Resumo:
We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties of the one dimensional Fermi accelerator model, under the presence of frictional force are studied. The frictional force is assumed as being proportional to the square particle's velocity. The problem is described by use of a two dimensional non linear mapping, therefore obtained via the solution of differential equations. We confirm that the model experiences contraction of the phase space area and in special, we characterized the behavior of the particle approaching an attracting fixed point. © 2007 American Institute of Physics.