959 resultados para Minres Filter Diagonalization
Resumo:
Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed.Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.
Resumo:
The state-space approach is used to evaluate the relation between soil physical and chemical properties in an area cultivated with sugarcane. The experiment was carried out on a Rhodic Kandiudalf in Piracicaba, State of São Paulo, Brazil. Sugarcane was planted on an area of 0.21 ha i.e., in 15 rows 100 m long, spaced 1.4 m. Soil water content, soil organic matter, clay content and aggregate stability were sampled along a transect of 84 points, meter by meter. The state-space approach is used to evaluate how the soil water content is affected by itself and by soil organic matter, clay content, and aggregate stability of neighboring locations, in different combinations, aiming to contribute to a better understanding of the relation among these variables in the soil. Results show that soil water contents were successfully estimated by this approach. Best performances were found when the estimate of soil water content at locations i was related to soil water content, clay content and aggregate stability at locations i-1. Results also indicate that this state-space model using all series describes the soil water content better than any equivalent multiple regression equation.
Resumo:
The aim of this work was to determine whether the filters used in microirrigation systems can remove potentially emitter-clogging particles. The particle size and volume distributions of different effluents and their filtrates were established, and the efficiency of the removal of these particles and total suspended solids by screen, disc and sand filters determined. In most of the effluents and filtrates, the number of particles with a diameter > 20 μm was minimal. By analysing the particle volume distribution it was found that particles larger than the disc and screen filter pores appeared in the filtrates. However, the sand filter was able to retain particles larger than the pore size. The filtration efficiency depended more on the type of effluent than on the filter. It was also found that the particle size distribution followed a potential law. Analysis of the β exponents showed that the filters did not significantly modify the particle size distribution of the effluents
Resumo:
PURPOSE: We describe the results of a preliminary prospective study using different recently developed temporary and retrievable inferior vena cava (IVC) filters. METHODS: Fifty temporary IVC filters (Gunther, Gunther Tulip, Antheor) were inserted in 47 patients when the required period of protection against pulmonary embolism (PE) was estimated to be less than 2 weeks. The indications were documented deep vein thrombosis (DVT) and temporary contraindications for anticoagulation, a high risk for PE, and PE despite DVT prophylaxis. RESULTS: Filters were removed 1-12 days after placement and nine (18%) had captured thrombi. Complications were one PE during and after removal of a filter, two minor filter migrations, and one IVC thrombosis. CONCLUSION: Temporary filters are effective in trapping clots and protecting against PE, and the complication rate does not exceed that of permanent filters. They are an alternative when protection from PE is required temporarily, and should be considered in patients with a normal life expectancy.
Resumo:
Introduction. Agricultural workers are among the professional groups most at risk of developing acute or chronic respiratory problems. Despite this fact, the etiology of these occupational diseases is poorly known, even in important sectors of agriculture such as the crops sector. Cereals can be colonized by a large number of fungal species throughout the plants' growth, but also during grain storage. Some of these fungi deliver toxins that can have a serious impact on human health when they are ingested via wheat products. Although International and European legislation on contaminants in food, including mycotoxins, include measures to ensure protection of public health by setting down the maximum levels for certain contaminants, the risks associated with the inhalation of such molecules during grain handling remains poorly documented. Goal of study. This project's objective was to characterize worker exposure to pathogenic, irritative or allergenic microorganisms and to identify the abiotic or biotic factors that reduce the growth of these microorganisms in crops. Indeed, the proliferation of microorganisms on wheat is dependent on temperature, rainfall and human disturbance (e.g. usage of tillage, addition of fungicides). A change in the concentration of these microorganisms in the substrate will directly result in a change in the concentration of aerosolized particles of the same microorganisms. Therefore, the exposure of worker to bioaérosols will also change. The Vaud region of Switzerland is a perfect region for conduct such a project as weather conditions vary and agricultural land management programs are divers at a small geographic scale. Methods. Bioaerosols and wheat dust have been sampled during wheat harvesting of summer 2010 at 100 sites uniformly distributed in the Vaud region that are representative of the different agriculture practices. Personal exposure has been evaluated for different wheat related activities: harvesting, grain unload, baling straw, the cleaning of harvesters and silos. Aerosols have been sampled at a rate of 2L/min between 15 min to 4 hours (t) on a 5m PVC filter for estimating the total dust inhaled, on gelatine filter for the identification and quantification of molds, and on a 0.45um polycarbonate filter for endotoxin quantification. Altitude, temperature and annual average rainfall were considered for each site. The physical and chemical characteristics of soils were determined using the methods in effect at Sol Council (Nyon). Total dust has been quantified following NIOSH 0500 method. Reactive endotoxine activity has been determined with Limulus Amebocyte Lysate Assay. All molds have been identified by the pyrosequencing of ITS2 amplicons generated from bioaerosol or wheat dust genomic DNA. Results & Conclusions. Our results confirm the previous quantitative data on the worker exposure to wheat dust. In addition, they show that crop workers are systematically exposed to complex mixtures of allergens, irritants or cytotoxic components. The novelty of our study is the systematic detection of molds such as Fusarium - that is a mycotoxins producer - in the bioaerosols. The results are interpreted by taking in account the agriculture practice, the Phosphorus : Carbon : Nitrogen ratio of the soil, the altitude and the average of rainy days per year.
Resumo:
The purposes of this study were to characterize the performance of a 3-dimensional (3D) ordered-subset expectation maximization (OSEM) algorithm in the quantification of left ventricular (LV) function with (99m)Tc-labeled agent gated SPECT (G-SPECT), the QGS program, and a beating-heart phantom and to optimize the reconstruction parameters for clinical applications. METHODS: A G-SPECT image of a dynamic heart phantom simulating the beating left ventricle was acquired. The exact volumes of the phantom were known and were as follows: end-diastolic volume (EDV) of 112 mL, end-systolic volume (ESV) of 37 mL, and stroke volume (SV) of 75 mL; these volumes produced an LV ejection fraction (LVEF) of 67%. Tomographic reconstructions were obtained after 10-20 iterations (I) with 4, 8, and 16 subsets (S) at full width at half maximum (FWHM) gaussian postprocessing filter cutoff values of 8-15 mm. The QGS program was used for quantitative measurements. RESULTS: Measured values ranged from 72 to 92 mL for EDV, from 18 to 32 mL for ESV, and from 54 to 63 mL for SV, and the calculated LVEF ranged from 65% to 76%. Overall, the combination of 10 I, 8 S, and a cutoff filter value of 10 mm produced the most accurate results. The plot of the measures with respect to the expectation maximization-equivalent iterations (I x S product) revealed a bell-shaped curve for the LV volumes and a reverse distribution for the LVEF, with the best results in the intermediate range. In particular, FWHM cutoff values exceeding 10 mm affected the estimation of the LV volumes. CONCLUSION: The QGS program is able to correctly calculate the LVEF when used in association with an optimized 3D OSEM algorithm (8 S, 10 I, and FWHM of 10 mm) but underestimates the LV volumes. However, various combinations of technical parameters, including a limited range of I and S (80-160 expectation maximization-equivalent iterations) and low cutoff values (< or =10 mm) for the gaussian postprocessing filter, produced results with similar accuracies and without clinically relevant differences in the LV volumes and the estimated LVEF.
Resumo:
Purpose: To investigate the differences between Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: 105 eyes of 56 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter/500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter/695nm barrier filter) before and after FFA. The quality of the FAF images was compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo-and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior resolution in 18, while Topcon images were estimated superior in 29 eyes. No difference was found in 58 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found associated with better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (72%), but showed mild autofluorescence on Topcon (85%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 53% Iso-FAF, in 43% mild Hypo-FAF, and in 4% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to serous exudation showed better on HRA. Cystic edema was visible only on HRA in a petaloid hyper-FAF pattern in 83%, while only two eyes (17%) showed similar behavior in both HRA- and Topcon images. Hard exudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blockage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract and poor fixation respectively. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behavior, there are differences between the 2 systems which need to be taken into account when interpreting the images.
A filtering method to correct time-lapse 3D ERT data and improve imaging of natural aquifer dynamics
Resumo:
We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.
Resumo:
In the European GLORIA project, 12 summits (treeline to nival belt) were inventoried in three regions of Switzerland: two in the Swiss National Park Graubünden and one in Valais. Vascular plants were recorded in all three regions and bryophytes and lichens were recorded only in Valais. On each summit, vegetation and temperature data were sampled using sampling protocols for the GLORIA project (Global Observation Research Initiative in Alpine environment) on large summit sections and in clusters of four 1x1-m quadrats. We observed a general decrease of species richness for all three systematic groups with increasing elevation in the summit sections, but only for vascular plants in the quadrats. In Valais, there was higher species richness for vascular plants than for bryophytes and lichens on the lower summits, but as the decrease in species richness was less pronounced for cryptogams, the latter were more numerous than vascular plants on the highest summit. Vascular species showed a clear shift of the dominant life form with elevation, with chamaephytes replacing hemicryptophytes. Bryophytes and lichens showed a weak trend among the life forms at the summit section scale, but a stronger shift of the dominant forms was seen in the quadrats, with cushion replacing turf bryophytes and crustaceous replacing fruticose lichens. Altogether, these results sustain the temperature-physiographic hypothesis to explain the species richness decrease along the altitudinal gradient: the harsh climatic conditions of the alpine-nival belts act as a filter for species, but the diminishing diversity of microhabitats is also an important factor. Because cryptogams depend more on humidity than temperature and more on smaller microhabitats than vascular plants, the decrease of species richness is more gradual with elevation for bryophytes and lichens.
Resumo:
El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente
Resumo:
Empirical studies have shown little evidence to support the presence of all unit roots present in the $^{\Delta_4}$ filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors $(1-L),(1+L),\bigg(1+L^2\bigg),\bigg(1-L^2\bigg) y \bigg(1+L+L^2+L^3\bigg)$ are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency $^{\pi/2}$ and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios $^{t_{{\hat\pi}_1}}$ and $^{t_{{\hat\pi}_2}}$ and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency $^{\pi/2}$.
Resumo:
Multiexponential decays may contain time-constants differing in several orders of magnitudes. In such cases, uniform sampling results in very long records featuring a high degree of oversampling at the final part of the transient. Here, we analyze a nonlinear time scale transformation to reduce the total number of samples with minimum signal distortion, achieving an important reduction of the computational cost of subsequent analyses. We propose a time-varying filter whose length is optimized for minimum mean square error
Resumo:
The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT-PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of genes.
Resumo:
The analysis of multiexponential decays is challenging because of their complex nature. When analyzing these signals, not only the parameters, but also the orders of the models, have to be estimated. We present an improved spectroscopic technique specially suited for this purpose. The proposed algorithm combines an iterative linear filter with an iterative deconvolution method. A thorough analysis of the noise effect is presented. The performance is tested with synthetic and experimental data.
Resumo:
Inductive-based devices integrated with Si technology for biodetection applications are characterized, using simple resonant differential filter configurations. This has allowed the corroboration of the viability of the proposed circuits, which are characterized by their very high simplicity, for microinductive signal conditioning in high-sensitivity sensor devices. The simulation of these simple circuits predicts sensitivities of the differential output voltage which can achieve values in the range of 0.1-1 V/nH, depending on the coil parameters. These very high-sensitivity values open the possibility for the experimental detection of extremely small inductance changes in the devices. For real microinductive devices, both series resistance and parasitic capacitive components contribute to the decrease of the differential circuit sensitivity. Nevertheless, measurements performed using micro-coils fabricated with relatively high series resistance and coupling parasitic effects have allowed detection of changes in the range of 2 nH. which are compatible with biodetection applications with estimated detection limits below the picomolarity range.