992 resultados para Methodist Episcopal Church. Conferences. Rock River.
(Table 4, page 292), Chemical analyses of two manganese crusts from the Lika river, Vermland, Sweden
Resumo:
The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. While elevated ages in fluvially-transported organic matter are usually explained by erosion of soils and sediments, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and high carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River in conjunction with molecular markers for methane-producing land cover reflecting wetland extent in the watershed. We find that the Congo River has been discharging aged organic matter for several thousand years with increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter we infer that this process may cause a profound direct climate feedback currently underestimated in carbon cycle assessments.
Resumo:
The trace element content of different bog ores has been measured and it appeared that most of these elements are enriched in the manganiferous bog ores as compared with the ferriferous ones. The manganiferous bog ores have also proved to have a higher radioactivity than the ferriferous ones.
Resumo:
Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
Resumo:
The author is studying various manganese coated river pebbles which had been given to him for evaluating their chemical properties. Samples were provided for the confluence of the Vistula and the Dunajec river in Poland by Mr. W. Petraschek. Other samples had been acquired earlier from Pr. A. Fraunhofer in the river bed of the Enns river near the town of Ernsthofen in Austria.
Resumo:
Materials from different spheres of the Earth are ultimately delivered to bottom sediments, which serve as a natural recorder of the functioning of other spheres and originate as a result of the accumulation of their substances. Sedimentary material and species of river-transported elements are subjected to dramatic reworking in marginal filters, where river and sea waters are mixed. These processes are most important for the Caspian Sea, where runoffs of rivers (especially the Volga River) and the intense development and transportation of hydrocarbon fuel by tankers and pipelines (related to the coastal petroleum industry in the Sumgait and Baku ports, Apsheron Peninsula) are potential sources of hydrocarbon pollution. Previously obtained data showed that the total content of hydrocarbon fraction (i.e., the sum of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH)) in bottom sediments varied within 29-1820 µg/g. The content of petroleum hydrocarbons in the northeastern Caspian region varied from 0.052 to 34.09 µg/g with the maximum content in the Tengiz field. The content of six polyarenes in the Volga delta sediments was no more than 40 ng/g. To determine the recent HC pollution of bottom sediments and trends in the functioning of the Volga marginal filter, in summer of 2003 and 2004 we analyzed bottom sediments (58 samples) in the river waterway; Kirovsk channel; Bakhtemir and Ikryanoe branches; tributaries of the Kizan, Chagan, and other rivers; and the Caspian seashore.
Resumo:
Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific d13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific d13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific d13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific d13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.
Resumo:
The chemical compositions, modal mineralogy, and textural variability of interstitial minerals in sandstones of the Athabasca Group strata in the vicinity of the McArthur River unconformity-related uranium deposit were characterized using a combination of short wave infrared spectroscopy (SWIR), lithogeochemistry, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and laser ablation mass spectrometry (LA-ICP-MS) to determine the residence sites of pathfinder trace elements. The importance of integrating in-situ mineral chemistry with whole-rock analyses resides in the possibility to establish the mineralogical and paragenetic context of geochemical signatures in defining the footprint of the deposit. Located in the Athabasca Basin, Saskatchewan, Canada, the deposit is situated below ~550 m of quartz arenitic sandstones that are strongly silicified between depths of approximately 200-400 m. The silicified layer exhibits significant control on the distribution of alteration minerals, and appears to have restricted both the primary and secondary dispersion of pathfinder trace elements, which include U, radiogenic Pb isotopes, V, Ni, Co, Cu, Mo, As, Zn, and REEs. Diagenetic background sandstones contain assemblages of illite, dickite, aluminum-phosphate-sulfate (APS) minerals, apatite, and Fe-Ti oxide minerals. Altered sandstones contain assemblages of Al-Mg chlorite (sudoite), alkali-deficient dravite, APS minerals, kaolinite, illite, and oxide minerals. Throughout the sandstones, APS minerals account for the majority of the Sr and LREE concentrations, whereas late pre-ore chlorite, containing up to 0.1 wt.% Ni, accounts for the majority of Ni concentrations. Cobalt, Cu, Mo, and Zn occur predominantly in cryptic sub-micron sulfide and sulfarsenide inclusions in clay mineral aggregates and in association with paragenetically-late Fe-Ti oxides. Uranium occurs predominantly in cryptic micro-inclusions associated with pyrite in late-stage quartz overgrowths, and with paragenetically late Fe-Ti oxide micro-inclusions in kaolinite. Additionally, up to 0.2 wt.% U is cryptically distributed in post-ore Fe-oxide veins. Early diagenetic apatite, monazite and apatite inclusions in detrital quartz, and detrital zircon also contribute significant U and HREE to samples analyzed with an aggressive leach such as Aqua Regia. Detailed LA-ICP-MS chemical mapping of interstitial assemblages, detrital grains, and cements provides new insights into the distribution and inventory of pathfinder elements in the footprint of the McArthur River uranium deposit.
Resumo:
Mineral and chemical composition of alluvial Upper-Pleistocene deposits from the Alto Guadalquivir Basin (SE Spain) were studied as a tool to identify sedimentary and geomorphological processes controlling its formation. Sediments located upstream, in the north-eastern sector of the basin, are rich in dolomite, illite, MgO and KB2BO. Downstream, sediments at the sequence base are enriched in calcite, smectite and CaO, whereas the upper sediments have similar features to those from upstream. Elevated rare-earth elements (REE) values can be related to low carbonate content in the sediments and the increase of silicate material produced and concentrated during soil formation processes in the neighbouring source areas. Two mineralogical and geochemical signatures related to different sediment source areas were identified. Basal levels were deposited during a predominantly erosive initial stage, and are mainly composed of calcite and smectite materials enriched in REE coming from Neogene marls and limestones. Then the deposition of the upper levels of the alluvial sequences, made of dolomite and illitic materials depleted in REE coming from the surrounding Sierra de Cazorla area took place during a less erosive later stage of the fluvial system. Such modification was responsible of the change in the mineralogical and geochemical composition of the alluvial sediments.
Resumo:
Also covers Arlington and Loudoun counties.
Resumo:
Flat-lying Early and Middle Ordovician limestones exposed on the North margin of Estonia provide key insights into the early Paleozoic biosphere and climatic history of the Baltic Platform, and potentially offer a site for calibrating the duration of the proposed Moyero River Reversed Superchron. Past paleomagnetic analyses on these rocks have been focused primarily on determining paleomagnetic pole positions and have been hampered by relatively weak remanent magnetizations. We therefore applied techniques of the Rock and Paleomagnetic Instrument Development (RAPID) consortium using thin-walled, low-noise quartz glass sample holders on an automatic system to enhance magnetostratigraphic resolution. Our results, based on over 300 oriented core samples spanning the stratigraphic interval from the Volkhov stage, up through the Lasnamägi stage, confirm previous work isolating a stable characteristic magnetization of reversed polarity, and furthermore confirm the presence of an interval of magnetically Reversed polarity spanning an interval of at least 15 million year duration. In addition, we recognize a magnetic overprint of presumed Normal polarity held in antiferromagnetic phases, of presumed Permian age, based on the apparent polar wander path given by (Plado et al., 2010).