971 resultados para Metal TCNQ complexes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new diorganotin(IV) complexes have been prepared from R(2)SnCl(2) (R = Me, Ph) with the ligands 5-hydroxy-3-metyl-5-phenyl-1-(S-benzildithiocarbazate)-pyrazoline (H(2)L(1)) and 5-hydroxy-3-methyl-5-phenyl-1-(2-thiophenecarboxylic)-pyrazoline (H(2)L(2)). The complexes were characterized by elemental analysis, IR. (1)H (13)C, (119)Sn NMR and Mossbauer spectroscopes The complexes [Me(2)SnL(1)], [Ph(2)SnL(1)] and [Me(2)SnL(2)] were also studied by single crystal X-ray diffraction and the results showed that the Sn(IV) central atom of the complexes adopts a distorted trigonal bipyramidal (TBP) geometry with the N atom of the ONX-tridentate (X = O and S) ligand and two organic groups occupying equatorial sites. The C-Sn-C angles for [Me(2)Sn(L(1))] and [Ph(2)Sn(L(1))] were calculated using a correlation between (119)Sn Mossbauer and X-ray crystallographic data based on the point-charge model Theoretical calculations were performed with the B3LYP density functional employing 3-21G(*) and DZVP all electron basis sets showing good agreement with experimental findings General and Sn(IV) specific IR harmonic frequency scale factors for both basis sets were obtained from comparison with selected experimental frequencies (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu(II) ions previously coordinated with typical electroplating organic additives were investigated as an alternative source of metal for plating bath. The coordination complexes were isolated from reaction between CuSO(4) and organic additives as ligands (oxalate ion, ethylenediamine or imidazole). Deposits over 1010 steel were successfully obtained from electroplated baths using the complexes without any addition of free additives, at pH = 4.5 (H(2)SO(4)/Na(2)SO(4)). These deposits showed better morphologies than deposits obtained from CuSO(4) solution either in the absence or presence of oxalate ion as additive (40 mmol L(-1)), at pH = 4.5 (H(2)SO(4)/Na(2)SO(4))It is suggestive that the starting metal plating coordinated with additives influences the electrode position processes, providing deposits with corrosion potentials shifted over + 200 mV in 0.5 mol L(-1) NaCl (1 mV s(-1)). The resistance against corrosion is sensitive to the type of additive-complex used as precursor. The complex with ethylenediamine presented the best deposit results with the lowest pitting potential (-0.27 V vs 3.0 mol L(-1) CE). It was concluded that the addition of free additives to the electrodeposition baths is not necessary when working with previously coordinated additives. Thus, the complexes generated in ex-situ are good alternatives as plating precursors for electrodeposition bath. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions of N-[N`,N`-diethylamino(thiocarbonyl)]benzimidoyl chloride with 4,4-dialkylthiosemicarbazides give a novel class of thiosemicarbazides/thiosemicarbazones, H(2)L, which causes a remarkable reduction of cell growth in in vitro experiments. These strong antiproliferative effects are also observed for oxorhenium(V) complexes of the general composition [ReOCl(L)], which are formed by reactions of the potentially tridentate ligands with (NBu(4))[ReOCl(4)]. A systematic substitution of the alkyl groups in the thiosemicarbazone building blocks of the ligands do not significantly influence the biological activity of the metal complexes, while the replacement of the chloro ligand by a PPh(3) ligand (by the replacement of the oxo unit by a nitrido ligand) completely terminated the cytotoxicity of the metal complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed-ligand complexes of technetium(V) or rhenium(V) containing tridentate N-[(dialkylamino)(thiocarbonyl)]benzamidine (H(2)L(1)) and bidentate N,N-dialkyl-N`-benzoylthiourea (HL(2)) ligands were formed in high yields when (NBu(4))[MOCl(4)] (M = Tc or Re) or [ReOCl(3)(PPh(3))(2)] was treated with mixtures of the proligands. Other approaches for the synthesis of the products are reactions of [MOCl(L(1))] complexes with HL(2) or compounds of the-composition [ReOCl(2)(PPh(3))(L(2))] with H(2)L(1). The resulting air-stable [MO(L(1))(L(2))] complexes possess potential for the development of metal-based radiopharmaceuticals. [TcO(L(1))(L(2))] complexes are readily reduced by PPh3 with formation of [Tc(L(1))(L(2))(PPh(3))]. The resulting Tc(III) complexes undergo two almost-reversible oxidation steps corresponding to one-electron transfer processes. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel tridentate thiosemicarbazide-type ligand class with an SNS donor set, H(2)L(1), was prepared by reactions of N-[N`,N`-dialkylamino(thiocarbonyl)]benzimidoyl chlorides with thiosemicarbazides. H(2)L(1) ligands readily react with (NBu(4))[TcOCl(4)] in MeOH under the formation of red oxotechnetium(V) complexes of composition [TcOCl(L(1))]. The monomeric, five-coordinate compounds are air-stable and bind (L(1))(2-) tridentate in the equatorial coordination sphere. The compounds represent the first examples of oxotechnetium(V) complexes with NS chelate-bonded thiosemicarbazones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes [Hpy][Cu(H3L)(H2O)] 1 (L6 = nitrilotrimethylenetrisphosphonate) and [Cu(HL°)(py)]2·2Me2CO 2 [(L°)3 = P,P,P" -triphenylnitrilotrismethylenetrisphosphinate)] have been isolated and characterized by X-ray crystallography, near IR-visible spectroscopy and magnetic measurements. The structure determination has shown the complexes to be constituted by monomeric and dimeric units respectively. In the monomer the metal atom is surrounded by the phosphonate ligand and a water molecule, with a geometry between a trigonal bipyramid and a square pyramid. The two copper atoms in the dimer are held together by an arm of the tripod ligand, with a pyridine molecule as additional ligand, and display octahedral geometry. The presence of monomeric and dimeric species in aqueous solutions of 1 and 2 has been shown by ESMS studies. The formation in water solution of the dimer [{Cu(H3L)}2]2-, as a minor species, has been supported by potentiometric measurements, whereas only the monomeric anion [CuL°] has been ascertained to be present. In general the ligand H3L° forms less stable copper(II) complexes than H6L.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions of the beryllium(II) ion with the cyclopentadienyltris(diethylphosphito-P)cobaltate monoanion, L-, have been investigated, in aqueous solution, by synthetic methods, potentiometry, ESMS, and 1H, 31P, and 9Be NMR spectroscopy. L- has been found able to displace either two or three water molecules in the beryllium(II) coordination sphere, to form mononuclear, dinuclear, and trinuclear derivatives, in which the metal ion is pseudotetrahedrally coordinated. The species [BeL(H2O)]+ and [Be2L2(μ-OH)]+ have been identified in solution while complexes of formula BeL2 and [Be3L4](ClO4)2 have been isolated as solid materials. The species [BeL(OPPh2)]+, closely related to [BeL(H2O)]+, has been characterized in acetone solution and isolated as tetraphenylborate salt. The structure of the unusual trimeric complex [Be3L4]2+ has been elucidated by an unprecedented 2D 9Be-31P NMR correlation spectrum showing the presence of a single central beryllium nucleus and two equivalent terminal beryllium nuclei. The three beryllium centers are held together by four cobaltate ligands, which display two different bonding modes: two ligands are terminally linked with all the three oxygen donors to one terminal beryllium, and the other two bridge two metal centers, sharing the oxygen donors between central and terminal beryllium atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1952, Dwyer and coworkers began testing a series of metal complexes for potential inhibition of cancer cell proliferation in animals.[l] The complexes tested were unsuitable for such studies due to their high toxicity. Therefore, no further work was done on the project. However, in 1965, Rosenberg and coworkers revisited the possibility of potential metal-based drugs. Serendipitously, they discovered that cis-diamminedichloroplatinum(lI) (cisplatin) inhibits cell division in E. coli.[2] Further studies of this and other platinum compounds revealed inhibition of tumor cell lines sarcoma 180 and leukemia LI2l0 in mice.[l] Cisplatin was approved by the Food and Drug Administration in 1970 as a chemical chemotherapeutic agent in the treatment of cancer. The drug has primarily been used in the treatment of testicular and ovarian cancers, although the powerful chemotherapeutic properties of the compound indicate use against a variety of other cancers.[3] The toxicity of this compound, however, warrants the development of other metal-based potential antitumor agents. The success of cisplatin, a transition-metal-based chemotherapeutic, opened the doors to a host of research on the antitumor effects of other transition-metal complexes. Beginning in the 1970s, researchers looked to rhodium for potential use in antitumor complexes. Dirhodium complexes with bridging equatorial ligands (Figure I) were the primary focus for this research. The overwhelming majority of these complexes were dirhodium(II) carboxylate complexes, containing two rhodium(II) centers, four equatorial ligands in a lantero formation around the metal center, and an axial ligand on either end. The family of complexes in Figure 1 will be referred to as dirhodium(II) carboxylate complexes. The dirhodium centers are each d? with a metal-metal bond between them. Although d? atoms are paramagnetic, the two unpaired electrons pair to make the complex diamagnetic. The basic formula of the dirhodium(lI) carboxylate complexes is Rh?(RCOO)?(L)? with R being methyl, ethyl, propyl, or butyl groups and L being water or the solvent in which the complex was crystalized. Of these dirbodium(II) carboxylate complexes, our research focuses on Rb la and two other similar complexes Rh2 and Rh3 (Figure 2). Rh2 is an activated form of Rhla, with four acetonitrile groups in place of two of the bidentate acetate ligands. Rh3 is similar to Rhla, with trifluoromethyl groups in place of the methyl groups on the acetate ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four structural classes have been established for rare earth anthranilates, which have been prepared from the lanthanoid chloride or triflate and anthranilic acid (anthH) followed by pH adjustment to 4. [La(anth)3]n is a polymeric complex with nine coordinate lanthanum and bridging tridentate (O,O,O′) anthranilate ligands, whereas [Nd(anth)3(H2O)3] · 3H2O is monomeric with nine coordinate neodymium and solely chelating (O,O) anthranilate groups. Both chelating (O,O) and bridging bidentate (O,O′) ligands are observed in dimeric [Er2(anth)6(H2O)4] · 2H2O, in which erbium is eight coordinate and the water ligands are in a trans arrangement. A polymer is observed for [Yb(anth)3(H2O)]n with solely bridging bidentate (O,O′) ligands and seven coordination for ytterbium. The NH2 groups of the anthranilate ligands are not coordinated to the metal but is unusually involved in hydrogen-bond networks with water molecules for Ln = Er, Yb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new complexes, [PdX(κ2-2-C6R4PPh2)(PPh2Fc)] [X = Br, R = H (1), R = F (2); X = I, R = H (3), R = F (4)], containing ferrocenyldiphenylphosphine (PPh2Fc) have been prepared and fully characterised. The X-ray structures of complexes trans-1, cis-2 and cis-4, and that of a decomposition product of 4, [Pd(κ2-2-C6F4PPh2)(μ-I)(μ-2-C6F4PPh2)PdI(PPh2Fc)] (5), have been determined. These complexes show a distorted square planar geometry about the metal atom, the bite angles of the chelate ligands being about 69°, as expected. The cis/trans ratio of 1–4 in solution is strongly dependent on solvent. The new complexes and the uncoordinated PPh2Fc ligand were electrochemically characterised by cyclic and rotating disk voltammetry, UV-visible spectroelectrochemistry, and bulk electrolysis in dichloromethane and acetonitrile. In both cases, oxidation occurs at both the ferrocene and phosphine centres, but the complexes oxidise at more positive potentials than uncoordinated PPh2Fc; subsequently, the metal–phosphorus bond is cleaved, leading to free PPh2Fc+, which undergoes further chemical and electrochemical reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of new metal (M) dithiolene complexes bearing terthiophene (3, 12, M = Ni; 4, M = Pd; 5, 6, M = Au) and 2,5-bis(para-methoxyphenyl)thiophene units (14, M = Ni; 15, 16, M = Au; 17, M = Pd) have been synthesised in 38–99% yield. The electrochemical properties of the materials have been characterised by cyclic voltammetry and UV-vis spectroelectrochemistry. The nickel complexes possess low oxidation potentials (−0.12 to −0.25 V vs Ag/AgCl) due to the electron-rich dithiolene centres and all complexes display ligand-based redox activity. The terthiophene derivatives have been polymerised by electrochemical oxidation to give stable films with, in the case of poly(3), broad absorption characteristics. Charge transfer materials have been isolated from 14 and 16 with conductivities in the range 9 × 10−6 to 7 × 10−8 S cm−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the mixed annihilation electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) with various cyclometalated iridium(iii) chelates. Compared to mixed ECL systems comprising organic luminophores, the absence of T-route pathways enables effective predictions of the observed ECL based on simple estimations of the exergonicity of the reactions leading to excited state production. Moreover, the multiple, closely spaced reductions and oxidations of the metal chelates provide the ability to finely tune the energetics and therefore the observed emission colour. Distinct emissions from multiple luminophores in the same solution are observed in numerous systems. The relative intensity of these emissions and the overall emission colour are dependent on the particular oxidized and reduced species selected by the applied electrochemical potentials. Finally, these studies offer insights into the importance of electronic factors in the question of whether the reduced or oxidized partner becomes excited in annihilation ECL. This journal is

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating phenylpyridine- and triazolylpyridine-based ligands decorated with methylsulfonate or tetraethylene glycol (TEG) groups, a series of iridium(III) complexes has been created for green and blue electrogenerated chemiluminescence under analytically useful aqueous conditions, with tri-n-propylamine as a coreactant. The relative electrochemiluminescence (ECL) intensities of the complexes were dependent on the sensitivity of the photodetector over the wavelength range and the pulse time of the applied electrochemical potential. In terms of the integrated area of corrected ECL spectra, with a pulse time of 0.5 s, the intensities of the Ir(III) complexes were between 18 and 102 % that of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine). However, when the intensities were measured with a typical bialkali photomultiplier tube, the signal of the most effective blue emitter, [Ir(df-ppy)2 (pt-TEG)](+) (df-ppy=2-(2,4-difluorophenyl)pyridine anion, pt-TEG=1-(2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl)-4-(2-pyridyl)-1,2,3-triazole), was over 1200 % that of the orange-red emitter [Ru(bpy)3 ](2+) . A combined experimental and theoretical investigation of the electrochemical and spectroscopic properties of the Ir(III) complexes indicated that the greater intensity from [Ir(df-ppy)2 (pt-TEG)](+) relative to those of the other Ir(III) complexes resulted from a combination of many factors, rather than being significantly favored in one area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal X-ray diffraction. A combined theoretical and experimental investigation into the spectroscopic and electrochemical properties of the series was performed in order to gain understanding into the factors influencing photoluminescence and electrochemiluminescence efficiency for these complexes, with the results compared with those of similar NHC complexes of iridium and ruthenium. The N^C coordination mode in these complexes is thought to stabilise thermally accessible non-emissive states relative to the case with analogous complexes with C^C coordinated NHC ligands, resulting in low quantum yields. As a result of this and the instability of the oxidised and reduced forms of the complexes, the electrogenerated chemiluminescence intensities for the compounds are also low, despite favourable energetics. These studies provide valuable insights into the factors that must be considered when designing new NHC-based luminescent complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of lanthanoid chlorides or nitrates with sodium 3-(4′-hydroxyphenyl)propionate (Na4hpp) in methanol or water has yielded complexes [La4(4hpp)12(H2O)6]·4H2O·MeOH (1), [Ce2(4hpp)6(H2O)3]·(H2O)·2.5(EtOH) (2a) (after crystallization from ethanol), [Ho(4hpp)3(H2O)2] (5), [Er(4hpp)3(H2O)2]·1.5(H2O) (6), and [Lu(4hpp)3]·H2O crystal composition (7), as well as heterobimetallics [NaCe2(4hpp)7(H2O)2]·3(H2O) (2b), [NaPr2(4hpp)7(H2O)2]·3(H2O) (3), and [NaNd2(4hpp)7(H2O)(MeOH)]·(H2O)·3(MeOH) (4). The structures of homometallic complexes 1, 2a, 6, and 7 reveal one-dimensional coordination polymers and vividly illustrate the effect of lanthanoid contraction with a decline in coordination numbers in the series from 9-11 (1), 9,10 (2a), 8 (6) to 7 (7) through variations in carboxylate coordination and ligation of water. Bimetallic complexes 2a and 4 each exhibit five different carboxylate binding modes as well as coordination of the 4-OH substituent of 4hpp to sodium thereby linking 1D polymer chains into a 2D network with both 9 and 10 coordinate Ln atoms and 6 coordinate sodium. Bulk products after drying lose solvent of crystallization in some cases (2a, 6), or exchange MeOH for water (4). X-ray powder diffraction indicates that bulk 2b and 3 are isotypic, as are bulk 5 and 6. In contrast to the excellent corrosion protection of lanthanum 4-hydroxycinnamate, compound 1 is ineffective in preventing the corrosion of mild steel, thereby establishing the importance of the -CHCH- structural unit of the former in its anti-corrosion properties. However the flexible -CH2-CH2- chain of the 4hpp ligand enables the crystal engineering of its lanthanoid complexes in a wide variety of structures as well as effective crystallization for structure determination, whereas the analogous 4-hydroxycinnamates have so far evaded structural characterization except for Ln = La, Ce owing to crystallization problems.