864 resultados para Mesoporous silica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different mesoporous films of TiO2 were coated onto a QCM disc and fired at 450o C for 30 min. The first film was derived from a sol-gel paste that was popular in the early days of dye-sensitised solar cell, i.e. dssc, research, a TiO2(sg) film. The other was a commercial colloidal paste used to make examples of the current dssc cell; a TiO2(ds) film. A QCM was used to determine the mass of the TiO2 film deposited on each disc and the increase in the mass of the film when immersed in water/glycerol solutions with wt% values spanning the range 0-70%. The results of this work reveal that with both TiO2 mesoporous films the solution fills the film's pores and acts as a rigid mass, thereby allowing the porosity of each film to be calculated as: 59.1% and 71.6% for the TiO2(sg) and TiO2(ds) films, respectively. These results, coupled with surface area data, allowed the pore radii of the two films to be calculated as: 9.6 and 17.8 nm, respectively. This method is then simplified further, to just a few frequency measurements in water and only air to reveal the same porosity values. The value of the latter ‘one point’ method for making porosity measurements is discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional ordered mesoporous (3DOM) ZnCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The as-prepared ZnCo2O4 nanoparticles possess a high specific surface area of 127.2 m2 g-1 and a spinel crystalline structure. The Li-O2 battery utilizing 3DOM ZnCo2O4 shows a higher specific capacity of 6024 mAh g-1 than that with pure Ketjen black (KB). Moreover, the ZnCo2O4-based electrode enables much enhanced cyclability with a smaller discharge-recharge voltage gap than that of the carbon-only cathode. Such excellent catalytic performance of ZnCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that silicon-substituted materials enhance bone formation, yet the mechanism by which this occurs is poorly understood. This work investigates the potential of using diatom frustules to answer on fundamental questions surrounding the role of silica in bone healing. Biosilica with frustules 20m were isolated from Cyclotella meneghiniana a unicellular microalgae that was sourced from the Mississippi River, USA. Silanisation chemistry was used to modify the surface of C. meneghiniana with amine (–NH2) and thiol (–SH) terminated silanes. Untreated frustules and both functionalised groups were soaked in culture medium for 24hrs. Following the culture period, frustules were separated from the conditioned medium by centrifugation and both were tested separately in vitro for cytotoxicity using murine-monocyte macrophage (J774) cell line. Cytotoxicity was measured using LDH release to measure damage to cell membrane, MTS to measure cell viability and live-dead staining. The expression and release of pro-inflammatory cytokines (IL-6 and TNF) were measured using ELISA. Our results found that diatom frustules and those functionalised with amino groups showed no cytotoxicity or elevated cytokine release. Diatom frustules functionalised with thiol groups showed higher levels of cytotoxicity. Diatom frustules and those functionalised with amino groups were taken forward to an in vivo mouse toxicity model, whereby the immunological response, organ toxicity and route of metabolism/excretion of silica were investigated. Histological results showed no organ toxicity in any of the groups relative to control. Analysis of blood Si levels suggests that modified frustules are metabolised quicker than functionalised frustules, suggesting that physiochemical attributes influence their biodistribution. Our results show that diatom frustules are non cytotoxic and are promising materials to better understand the role of silica in bone healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Poor water-solubility of BCS class II drugs can limit their commercialization because of reduced oral bioavailability. It has been reported that loading of drug by adsorption onto porous silica would enhance drug solubility due to the increased surface area available for solvent diffusion. In this work, solid dispersions are formed using supercritical carbon dioxide (scCO2). The aim of this research was to characterise the solid-state properties of scCO2 dispersion and to investigate the impact of altering scCO2 processing conditions on final amorphous product performance that could lead to enhancement of drug dissolution rate for BCS class II drugs. Methods Indomethacin (IND) was purchased from Sigma-Aldrich (Dorset, UK) and was used as a model drug with two grades of high surface area silica (average particle sizes 3&[micro] and 7&[micro]), which were obtained directly from Grace-Davison (Germany). Material crystallinity was evaluated using powder X-ray diffraction (PXRD, Rigaku™, miniflex II, Japan) and high-speed differential scanning calorimetry (Hyper-DSC 8000, Perkin Elmer, USA). Materials were placed in a high-pressure vessel consisting of a CO2 cylinder, a Thar™ Technologies P50 high-pressure pump and a 750 ml high-pressure vessel (Thar, USA). Physical mixtures were exposed to CO2 gas above its critical conditions. SEM imaging and elemental analysis were conducted using a Jeol 6500 FEGSEM (Advanced MicroBeam Inc., Austria). Drug release was examined using USP type II dissolution tester (Caleva™, UK). Results The two grades of silica were found to be amorphous using PXRD and Hyper-DSC. Using PXRD, it was shown that an increase in incubation time and pressure resulted in a decrease in the crystalline content. Drug release profiles from the two different silica formulations prepared under the same conditions are shown in Figure 1. It was found that there was a significant enhancement in drug release, which was influenced, by silica type and other experiment conditions such as temperature, pressure and exposure time. SEM imaging and elemental analysis showed drug deposited inside silica pores as well as on the outer surface. Conclusion This project has shown that silica carrier platforms may be used as an alternative approach to generating polymeric solid dispersions of amorphous drugs exhibiting enhanced solubility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCF, NbMCF and TaMCF Mesostructured Cellular Foams were used as supports for platinum and silver (1 wt%). Metallic and bimetallic catalysts were prepared by grafting of metal species on APTMS (3-aminopropyltrimethoxysilane) and MPTMS (2-mercaptopropyltrimethoxysilane) functionalized supports. Characterizations by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF) spectroscopy, and in situ Fourier Transform Infrared (FTIR) spectroscopy allowed to monitor the oxidation state of metals and surface properties of the catalysts, in particular the formation of bimetallic phases and the strong metal–support interactions. It was evidenced that the functionalization agent (APTMS or MPTMS) influenced the metals dispersion, the type of bimetallic species and Nb/Ta interaction with Pt/Ag. Strong Nb–Ag interaction led to the reduction of niobium in the support and oxidation of silver. MPTMS interacted at first with Pt to form Pt–Ag ensembles highly active in CH3OH oxidation. The effect of Pt particle size and platinum–silver interaction on methanol oxidation was also considered. The nature of the functionalization agent strongly influenced the species formed on the surface during reaction with methanol and determined the catalytic activity and selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A paradigm shift is taking place from using transplanting tissue and synthetic implants to a tissue engineering approach that aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates, guiding the growth of new tissue. The central focus of this thesis was to produce porous glass and glass-ceramic scaffolds that exhibits a bioactive and biocompatible behaviour with specific surface reactivity in synthetic physiological fluids and cell-scaffold interactions, enhanced by composition and thermal treatments applied. Understanding the sintering behaviour and the interaction between the densification and crystallization processes of glass powders was essential for assessing the ideal sintering conditions for obtaining a glass scaffolds for tissue engineering applications. Our main goal was to carry out a comprehensive study of the bioactive glass sintering, identifying the powder size and sintering variables effect, for future design of sintered glass scaffolds with competent microstructures. The developed scaffolds prepared by the salt sintering method using a 3CaO.P2O5 - SiO2 - MgO glass system, with additions of Na2O with a salt, NaCl, exhibit high porosity, interconnectivity, pore size distribution and mechanical strength suitable for bone repair applications. The replacement of 6 % MgO by Na2O in the glass network allowed to tailor the dissolution rate and bioactivity of the glass scaffolds. Regarding the biological assessment, the incorporation of sodium to the composition resulted in an inibition cell response for small periods. Nevertheless it was demonstrated that for 21 days the cells response recovered and are similar for both glass compositions. The in vitro behaviour of the glass scaffolds was tested by introducing scaffolds to simulated body fluid for 21 days. Energy-dispersive Xray spectroscopy and SEM analyses proved the existence of CaP crystals for both compositions. Crystallization forming whitlockite was observed to affect the dissolution behaviour in simulated body fluid. By performing different heat treatments, it was possible to control the bioactivity and biocompatability of the glass scaffolds by means of a controlled crystallization. To recover and tune the bioactivity of the glass-ceramic with 82 % crystalline phase, different methods have been applied including functionalization using 3- aminopropyl-triethoxysilane (APTES). The glass ceramic modified surface exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF after 21 days while the as prepared glass-ceramic had no detected formation of calcium phosphate up to 5 months. A sufficient mechanical support for bone tissue regeneration that biodegrade later at a tailorable rate was achievable with the glass–ceramic scaffold. Considering the biological assessment, scaffolds demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. This study opens up new possibilities for using 3CaO.P2O5–SiO2–MgO glass to manufacture various structures, while tailoring their bioactivity by controlling the content of the crystalline phase. Additionally, the in vitro behaviour of these structures suggests the high potential of these materials to be used in the field of tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10−6 mol/L for a linear response after 8.0 × 10−7 mol/L with an anionic slope of −65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor