907 resultados para Measurement of Activity
Resumo:
Colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance (SPR) biosensor. The AuNPs were synthesized and functionalized with HS-OEG(3)-COOH by self assembling technique. Thereafter, the HS-OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti IgG antibody to form an enzyme-immunogold complex. Characterizations were performed by several methods: UV-vis absorption, DLS, HR-TEM and Fr-IR. The Au-anti IgG-HRP complex has been applied in enhancement of SPR immunoassay using a sensor chip constructed by 1:9 molar ratio of HS-OEG(6)-COOH and HS-OEG(3)-OH for detection of anti-GAD antibody. As a result, AuNPs showed their enhancement as being consistent with other previous studies while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. The limit of detection was found as low as 0.03 ng/ml of anti-GAD antibody (or 200 fM) which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.
Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.
Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
The commonly used British Standard constant head triaxial permeability test for testing of fine-grained soils is relatively time consuming. A reduction in the required time for soil permeability testing would provide potential cost savings to the construction industry, particularly in the construction quality assurance of landfill clay liners. The purpose of this paper is to evaluate an alternative approach of measuring permeability of fine-grained soils benefiting from accelerated time scaling for seepage flow when testing specimens in elevated gravity conditions provided by a centrifuge. As part of the investigation, an apparatus was designed and produced to measure water flow through soil samples under conditions of elevated gravitational acceleration using a small desktop laboratory centrifuge. A membrane was used to hydrostatically confine the test sample. A miniature data acquisition system was designed and incorporated in the apparatus to monitor and record changes in head and flow throughout the tests. Under enhanced gravity in the centrifuge, the flow through the sample was under ‘variable head' conditions as opposed to ‘constant head' conditions as in the classic constant head permeability tests conducted at 1 g . A mathematical model was developed for analysis of Darcy's coefficient of permeability under conditions of elevated gravitational acceleration and verified using the results obtained. The test data compare well with the results on analogous samples obtained using the classical British Standard constant head permeability tests.
Resumo:
Experiments were undertaken to characterize a noninvasive chronic, model of nasal congestion in which nasal patency is measured using acoustic rhinometry. Compound 48/80 was administered intranasally to elicit nasal congestion in five beagle dogs either by syringe (0.5 ml) in thiopental sodium-anesthetized animals or as a mist (0.25 ml) in the same animals in the conscious state. Effects of mast cell degranulation on nasal cavity volume as well as on minimal cross-sectional area (A(min)) and intranasal distance to A(min) (D(min)) were studied. Compound 48/80 caused a dose-related decrease in nasal cavity volume and A(min) together with a variable increase in D(min). Maximal responses were seen at 90-120 min. Compound 48/80 was less effective in producing nasal congestion in conscious animals, which also had significantly larger basal nasal cavity volumes. These results demonstrate the utility of using acoustic rhinometry to measure parameters of nasal patency in dogs and suggest that this model may prove useful in studies of the actions of decongestant drugs.
Resumo:
The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: µg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids
Resumo:
The mouse spleen cell assay (MSCA) has been compared with a radioimmunoassay for the measurement of serum erythropoietin (Ep). In 20 normal subjects the serum values ranged from 15 to 73 mU/ml for the MSCA compared with 5-30 mU/ml for the RIA. For normal sera there was no correlation between the results of the two assays. In 37 patients with anaemias of differing aetiologies and at various stages of treatment values ranged from 10 to 3645 mU/ml for the MSCA and 13-10,000 mU/ml for the RIA. Although patient values from the two assays were highly correlated (r = 0.98, P less than 0.001), the MSCA results were generally lower. These discrepancies can be largely accounted for by two factors. Firstly the MSCA is sensitive to non-specific matrix effects. Secondly, heat inactivation of serum, a prerequisite for the MSCA, but not for the RIA, destroys a variable and unpredictable proportion of the Ep in the test sera leading to an underestimation of Ep in the MSCA. We conclude that the RIA is more reliable than the MSCA which, in its present form, cannot be recommended for the accurate measurement of serum erythropoietin.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Resumo:
Pressure myography studies have played a crucial role in our understanding of vascular physiology and pathophysiology. Such studies depend upon the reliable measurement of changes in the diameter of isolated vessel segments over time. Although several software packages are available to carry out such measurements on small arteries and veins, no such software exists to study smaller vessels (<50 µm in diameter). We provide here a new, freely available open-source algorithm, MyoTracker, to measure and track changes in the diameter of small isolated retinal arterioles. The program has been developed as an ImageJ plug-in and uses a combination of cost analysis and edge enhancement to detect the vessel walls. In tests performed on a dataset of 102 images, automatic measurements were found to be comparable to those of manual ones. The program was also able to track both fast and slow constrictions and dilations during intraluminal pressure changes and following application of several drugs. Variability in automated measurements during analysis of videos and processing times were also investigated and are reported. MyoTracker is a new software to assist during pressure myography experiments on small isolated retinal arterioles. It provides fast and accurate measurements with low levels of noise and works with both individual images and videos. Although the program was developed to work with small arterioles, it is also capable of tracking the walls of other types of microvessels, including venules and capillaries. It also works well with larger arteries, and therefore may provide an alternative to other packages developed for larger vessels when its features are considered advantageous.
Resumo:
We present the results of a search for the reactivation of active asteroid 176P/LINEAR during its 2011 perihelion passage using deep optical observations obtained before, during, and after that perihelion passage. Deep composite images of 176P constructed from data obtained between 2011 June and 2011 December show no visible signs of activity, while photometric measurements of the object during this period also show no significant brightness enhancements similar to that observed for 176P between 2005 November and 2005 December when it was previously observed to be active. An azimuthal search for dust emission likewise reveals no evidence for directed emission (i.e., a tail, as was previously observed for 176P), while a one-dimensional surface brightness profile analysis shows no indication of a spherically symmetric coma at any time in 2011. We conclude that 176P did not in fact exhibit activity in 2011, at least not on the level on which it exhibited activity in 2005, and suggest that this could be due to the devolatization or mantling of the active site responsible for its activity in 2005.
Resumo:
Abstract Image
A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.
Resumo:
Alzheimer’s disease (AD) is associated with significant disturbances in the homeostasis of Na+ and K+ ions as well as reduced levels of Na+/K+ ATPase in the brain. This study used ICP-MS to accurately quantify Na+ and K+ concentrations in human postmortem brain tissue. We analyzed parietal cortex (Brodmann area 7) from 28 cognitively normal age-matched controls, 15 cases of moderate AD, 30 severe AD, and 15 dementia with Lewy bodies (DLB). Associations were investigated between [Na+] and [K+] and a number of variables including diagnosis, age, gender, Braak tangle stage, amyloid-β (Aβ) plaque load, tau load, frontal tissue pH, and APOE genotype. Brains from patients with severe AD had significantly higher (26%; p<0.001) [Na+] (mean 65.43 ± standard error 2.91 mmol/kg) than controls, but the concentration was not significantly altered in moderate AD or DLB. [Na+] correlated positively with Braak stage (r=0.45; p<0.0001), indicating association with disease severity. [K+] in tissue was 10% lower (p<0.05) in moderate AD than controls. However, [K+] in severe AD and DLB (40.97±1.31 mmol/kg) was not significantly different from controls. There was a significant positive correlation between [K+] and Aβ plaque load (r=0.46; p=0.035), and frontal tissue pH (r=0.35; p=0.008). [Na+] was not associated with [K+] across the groups, and neither ion was associated with tau load or APOE genotype. We have demonstrated disturbances of both [Na+] and [K+] in relation to the severity of AD and markers of AD pathology, although it is possible that these relate to late-stage secondary manifestations of the disease pathology.
Resumo:
Measurement of the dynamic properties of hydrogen and helium under extreme pressures is a key to understanding the physics of planetary interiors. The inelastic scattering signal from statically compressed hydrogen inside diamond anvil cells at 2.8 GPa and 6.4 GPa was measured at the Diamond Light Source synchrotron facility in the UK. The first direct measurement of the local field correction to the Coulomb interactions in degenerate plasmas was obtained from spectral shifts in the scattering data and compared to predictions by the Utsumi-Ichimaru theory for degenerate electron liquids.