999 resultados para Mate plant
Resumo:
Many nutrients provide energy and regulate physiological processes linked to exercise. This work aimed at using medicinal plant in the manufacturing of energetic cookie. An evaluation of microbiological and physicochemical stability was made within 180 days of the fabrication of the product. Sensorial analysis was performed in all stages with untrained tasters. The results were statistically tested. The evaluation of ergogenic effect of the product used the maximum volume of oxygen index as a parameter through the cooper track test (12 minutes) with 7 voluntaries. The participants received the consent form. This study was approved by the local ethics committee (N° CAAE - 0009.0.313.000-08). It was observed good stability for physicochemical and microbiological parameters. As for sensorial analysis there was a predominance of scores 6 to 8, characterizing good acceptance. It was verified increase in VO2 max after the intake of the cookies with or without the medicinal plants. However, the product with the medicinal plants presented a bigger value, 35.47 VO2 max mL/(kg.min)-1. The fraction of carbohydrate and the presence of medicinal plants can be considered as nutritional ergogenic substances. The lipid fraction favor the energetic aspect of the product. The proposed product presented energetic and ergogenic effect.
Resumo:
Several essential oils of condiment and medicinal plants possess proven antimicrobial activity and are of important interest for the food industry. Therefore, the Minimum Inhibitory Concentrations (MIC) of those oils should be determined for various bacteria. MIC varies according to the oil used, the major compounds, and the physiology of the bacterium under study. In the present study, the essential oils of the plants Thymus vulgaris (time), Cymbopogon citratus (lemongrass) and Laurus nobilis (bay) were chemically quantified, and the MIC was determined on the bacteria Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19117, Salmonella enterica Enteritidis S64, and Pseudomonas aeruginosa ATCC 27853. The essential oil of C. citratus demonstrated bacterial activity at all concentrations tested and against all of the bacteria tested. The majority of essential oil compounds were geranial and neral. The major constituent of T. vulgaris was 1.8-cineol and of L. nobilis was linalool, which presented lower antibacterial activity, followed by 1.8-cineol. The Gram-negative bacteria demonstrated higher resistance to the use of the essential oils tested in this study. E. coli was the least sensitive and was inhibited only by the oils of C. citratus and L. nobilis.
Resumo:
Fruits are important sources of nutrients in human diet, and Barbados Cherry (Malpighia glabra L.) is of particular interest due to its high content of antioxidants. Diets rich in fruits and vegetables protect individuals against diseases and cancer, but excessive intake of vitamins may act as pro-oxidant and generate changes in DNA. To evaluate the effect of different in natura (BAN) and frozen (BAF) Barbados Cherry pulp concentrations and synthetic vitamin C in liquid form (VC) on the chromosome level and the cell cycle division, root meristeme cells of Allium cepa L. and bone marrow cells of Wistar rats Rattus norvegicus, were used as test system. In Allium cepa L., BAN, at the highest concentration (0.4 mg.mL-1) and BAF, at the lowest concentration (0.2 mg.mL-1), inhibited cell division, and there was recovery of cell division after the recovery period in water only for BAN. In the Wistar rats, all treatments with Barbados Cherry, either acute or subchronic, were not cytotoxic or mutagenic; only the highest concentration of VC increased significantly the rate of chromosomal abnormalities. The data obtained are important to reinforce the use of Barbados Cherry fruit in the diet.
Resumo:
Staphylococcus spp. can survive in biofilms for long periods of time, and they can be transferred from one point to another and cause environmental contamination in food processing. The aim of this study was to detect Staphylococcus strains isolated from a poultry processing plant by the presence of adhesion genes and the phenotypic production of exopolysaccharide. In the present study, the production of exopolysaccharide and the presence of adhesion genes in 65 strains of Staphylococcus spp. were evaluated. All strains of Staphylococcus spp. produced exopolysaccharide, as confirmed by formation of black and opaque colonies in Congo Red Agar. The variation of sucrose content was critical for the production of exopolysaccharide in Congo Red Agar since at low sucrose concentrations all strains presented a characteristic result, i.e., there was no exopolysaccharide production. The atl gene was found in all strains, and the icaA and icaD genes were found in 97% of them. The data obtained suggest that Staphylococcus spp. isolated from the poultry processing plant evaluated has a potential for biofilm formation. An efficient control of this microorganism in food processing environment is necessary as they may represent a potential risk to consumers.
Resumo:
It is common to see in any soybean plant that seeds reach maturity at different times. Thus the objective of the present study was to determine the magnitude of the seed moisture range at different stages of maturation in a soybean plant. The field study was conducted in a tropical region in the state of Mato Grosso - Brazil, established with foundation seeds of the MTBR-45 cultivar, and at flowering, 100 plants were marked at the same maturity stage. Harvesting began when seeds still were at high moisture content (MC). At each of eight harvesting times, during 16 days, all pods from two plants were harvested and the seeds from each pod were hand threshed individually and determined the moisture content . The results revealed that there is a great distribution of seed MC in a soybean plant, where at physiological maturity, the magnitude can reach more than 30 percentage points. Also, even with an average MC below 12%, there were more than 20 % of the seeds with MC above 13% and some seeds at this point had been waiting to be harvested for more than a week. The following conclusions and/or recommendations can be taken: 1- The great seed MC range in a soybean seed lot harvested at field maturity leads to the presence of seeds susceptible to mechanical damage and with MC unsafe for adequate storage; 2 - It is recommended that harvesting be accomplished when the seeds are in the 15-18% MC range, in order to minimize field deterioration and the percentage of seeds with high MC; 3- Drying is recommended, even when soybean seeds are in their average MC safe for storage.
Resumo:
The aim of this study was to evaluate changes in canola yield components and seed physiological quality in response to different sowing densities. The study was made in a greenhouse at the REIPESOL Company Technological Center, Madrid - Spain, with the commercial "Toccata" hybrid variety. The initial sowing density was 360,000 plants/ha and the plant population was later thinned down to include treatments of 250 and 180 thousand plants/ha. Harvested seeds were sent to the Seed Technology Center Laboratory (CATES) at the Madrid Polytechnic University (UPM) to evaluate changes in plant architecture and yield components, as well as the seed physiological quality of different plant parts. Results demonstrated that canola plants showed changes in morphology and yield components in response to different sowing densities. The population of 250,000 plants/ha showed the best seed yield demonstrating that maximum yield is directly related to a correct sowing density. The number of pods/plant was the most important component for increased seed yield/plant and seed yield/area. The spatial distribution of canola seeds in the plant and canola sowing density did not affect seed physiological quality.
Resumo:
Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.
Resumo:
This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.
Resumo:
Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.
Resumo:
The refrigerator factory that would soon become the Glenridge Campus.
Resumo:
Matings systems using signals for sexual communication have been studied extensively and results commonly suggest that females use these signals for locating males, species-identification, and mate choice. Although numerous mating systems employ multiple signals, research has generally focused on long-range signals perhaps due to their prominence and ease of study. This study focused on the short-range acoustic courtship song of crickets. The results presented here suggest this signal is under selection by female choice. Females mated preferentially with males having shorter silences between the two types of ticks within the song. The length of these silences (Gap 1) was correlated with male condition such that males having long silences were significantly lower in mass with respect to body size when compared to males having short silences. Both Gap 1 length and male condition were significantly repeatable within males over time suggesting the possibility these traits have a genetic basis. This study is the first empirical study to test female preferences within the natural variation of the courtship song. It now appears, at least in crickets, that both the longand short-range signals of a multi-signal mating system may contribute to male mating success.
Resumo:
Gamma-aminobutyric acid (GAB A) is a ubiquitous non-protein amino acid synthesized via the decarboxylation of L-glutamate in a reaction catalyzed by the cytosolic enzyme L-glutamate decarboxylase (GAD). In animals it functions as an inhibitory neurotransmitter. In plants it accumulates rapidly in response to various stresses, but its function remains unclear. The hypothesis that GABA accumulation in leaf tissue may function as a plant resistance mechanism against phytophagous insect activity was investigated. GABA accumulation in response to mechanical stimulation, mechanical damage and insect activity was demonstrated. In wt tobacco (Nicotiana tabacum cv Samsun), mechanical stimulation or damage caused GABA to accumulate within 2 min from mean levels of 14 to 37 and 1~9 nmol g-l fresh weight (FW), respectively. In the transgenic tobacco strain CaMVGAD27c overexpressing Petunia GAD, the same treatments caused GABA to accumulate from 12 to 59 and 279 nmol g-l FW, respectively. In the transgenic tobacco strain CaMVGADilC 11 overexpressing Petunia GAD lacking an autoinhibitory domain, mechanical stimulation or damage caused GABA to accumulate from 180 to 309 and 630 nmol g-l FW, respectively. Ambulatory activity by tobacco budworm (TBW) larvae (Heliothis virescens) on leaves of CaMVGAD27c tobacco caused GABA to accumulate from 28 to 80 nmol g-l FW within 5 min. Ambulatory and leaf-rolling activity by oblique banded leaf roller (OBLR) larvae (Choristoneura rosaceana cv Harris) on wt soybean leaves (Glycine max cv Harovinton) caused GABA to accumulate from 60 to 1123 nmol g-l FW within 20 min. Increased GABA levels in leaf tissue were shown to affect phytophagous preference in TBW larvae presented with wt and transgenic tobacco leaves. When presented with leaves of Samsun wt and CaMVGAD27c plants, TBW larvae consumed more wt leaf tissue (640 ± 501 S.D. mm2 ) than transgenic leaf tissue (278 ± 338 S.D. mm2 ) nine times out of ten. When presented with leaves of Samsun wt and CaMVGAD~C11 plants, TBW larvae consumed more transgenic leaf tissue (1219 ± 1009 S.D. mm2 ) than wt leaf tissue (28 ± 31 S.D. mm2 ) ten times out of ten. These results indicate that: (1) ambulatory activity of insect larvae on leaves results in increased GABA levels, (2) transgenic tobacco leaves with increased capacity for GABA synthesis deter feeding, and (3) transgenic tobacco leaves with constitutively higher GABA levels stimulate feeding.
Resumo:
Rapid and large accumulation of GABA (y-aminobutyric acid) in response to a number of plant stresses has been well documented. But the role(s) of GABA in plants is not well defined. In recent years, the possibility of GABA involvement in regulating plant growth and development has been raised. In the present study, this possibility was examined. First, to rapidly and accurately determine GABA levels in plant tissues, a spectrometric method for GABA determination was developed based on a commercially available enzyme Gabase. Seventy mM LaCb almost completely removed water-soluble pigments from plant tissues which greatly interfere with the absorbance reading at 340nm. Inactivation of GAD (glutamate decarboxylase) by immediately adding methanol to a frozen plant tissue powder was suggested to prevent GABA production during extraction. The recovery of GABA with this method was approximately 100%. Second, the relationship between GABA levels and hypocotyl elongation in soybean seedlings was analyzed using different approaches to regulate in vivo GABA levels and the elongation of hypocotyls. The following major observations were made. (1) Mechanical stimulation by stroking elevated GABA levels and concurrently induced a rapid and significant reduction in hypocotyl elongation. (2) External GABA was demonstrated to penetrate into the hypocotyls using '*C-GABA. Application of external GABA elevated in vivo GABA levels, but failed to inhibit hypocotyl elongation. (3) LaCla and blue light irradiation caused an inhibition in the elongation of dark-grown hypocotyls, whereas GABA levels were not significantly affected. (4) Ca^was suggested to be involved in the signal transduction pathway leading from mechanical stimulation to GABA production, as indicated by the ability of La'* to inhibit GABA production in stimulated hypocotyls. (5) Bicuculline, saclofen and baclofen (agonists and antagonists of GABA receptors in animals) had no effect on hypocotyl elongation. It might indicate that GABA-binding components which are structurally similar to animal GABA receptors and functionally capable of regulating plant growth may not exist in plants. Therefore, the conclusion was drawn that GABA alone is not sufficient to inhibit hypocotyl elongation. Third, chloride influx in isolated Asparagus cells was enhanced by lOmM GABA during a 3 hour incubation, but the effect was not specific for GABA. Chloride efflux was not influenced by GABA. Both influx and efflux of chloride were significantly inhibited by NPPB, a chloride channel blocker. These results suggest that GABA does not influence the activity of plant chloride channels.
Resumo:
The sugar beet cyst nematode, Heterodera schachtii, is a major agricultural pest. The disruption of the mating behaviour of this plant parasite in the field may provide a means of biological control, and a subsequent increase in crop yield. The H. schachtii female sex pheromone, which attracts homospecific males, was collected in an aqueous medium and isolated using high performance liquid chromatography. Characterization of the male-attractive material revealed that it was heat stable and water soluble. The aqueous medium conditioned by female H. schachtii was found to be biologically active and stimulated male behaviour in a concentration dependent manner. The activity of the crude pheromone was specific to males of H. schachtii and did not attract second stage juveniles. Results indicated that vanillic acid, a putative nematode pheromone, is not an active component of the H. schachtii sex pheromone. Male H. schachtii exhibited stylet thrusting, a poorly understood behaviour of the male, upon exposure to the female sex pheromone. This behaviour appeared to be associated with mate-finding and was used as a novel indicator of biological activity in bioassays. Serotonin, thought to be involved in the neural control of copulatory behaviour in nematodes, stimulated stylet thrusting. However, the relationship between stylet thrusting induced by the sex pheromone and stylet thrusting induced by serotonin is not clear. Extracellular electrical activity was recorded fi-om the anterior region of H. schachtii males during stylet thrusting, and appeared to be associated with this behaviour. The isolation of the female sex pheromone of H. schachtii may, ultimately, lead to the structural identification and synthesis of the active substance for use in a novel biological control strategy.