991 resultados para Massenspektrometrie, CE-ICP-MS, Actiniden
Resumo:
The glacial marine isotope stage 14 (MIS 14) appears in many climate records as an unusually warm glacial. During this period an almost monospecific, up to 1.5 m thick, laminated layer of the giant diatom Ethmodiscus rex has been deposited below the South Atlantic Subtropical Gyre. This oligotrophic region is today less favorable for diatom growth with sediments typically consisting of calcareous nannofossil oozes. We have reconstructed temperatures and the stable oxygen isotopic compositions of sea surface and thermocline water (d18Ow) from planktonic foraminiferal (Globigerinoides ruber and Globorotalia inflata) Mg/Ca and stable oxygen isotopes to test whether perturbations in surface ocean conditions contributed to the deposition of the diatom layer at ~530 kyr B.P. Temperatures and d18Ow values reconstructed from this diatom ooze interval are highly variable, with maxima similar to interglacial values. Since the area of the Ethmodiscus oozes resembles the region where Agulhas rings are present, we interpret these hydrographic changes to reflect the varying influence of warm and saline water of Indian Ocean origin that entered the Subtropical Gyre trapped in Agulhas rings. The formation of the Ethmodiscus oozes is associated with a period of maximum Agulhas leakage and a maximum frequency of Agulhas ring formation caused by a termination-type position of the Subtropical Front during the unusual warm MIS 14. The input of silica through the Agulhas rings enabled the shift in primary production from calcareous nannoplankton to diatoms, leading to the deposition of the massive diatom oozes.
Resumo:
A number of intensely altered, dark xenoliths with palimpsest quench textures were recorded within altered dacitic host rocks at Site 1189 (Roman Ruins, PACMANUS) during Ocean Drilling Program (ODP) Leg 193. Several of these displayed puzzling marginal fringes, apparently of altered plagioclase with variolitic texture, protruding into adjacent host rocks. Despite their alteration, the xenoliths were interpreted as fragments of rapidly chilled, possibly olivine-bearing basalts incorporated into the dacitic magmas either within the crustal plumbing system or during eruption at the seafloor (figures F15, F16, F17, F42, and F43 in Shipboard Scientific Party, 2002, doi:10.2973/odp.proc.ir.193.104.2002). An additional example of formerly spinifex-textured xenolith, the first from Site 1188 (Snowcap) and the first from the upper cristobalite-bearing zone of alteration, has been revealed by postcruise studies. Furthermore, a pristine sample of the parent lithology has been found within a dredge haul (MD-138, Binatang-2000 Cruise of Franklin; 3°43.60'S, 151°40.35'E, 1688 meters below sea level) from the Satanic Mills hydrothermal field at PACMANUS, near ODP Site 1191. The purpose of this report is to document these discoveries and thereby to confirm and build on shipboard interpretations. To my knowledge, similar xenoliths have never before been found in modern island arc or backarc volcanic sequences. Spinifex textures are most common in Archean komatiites, some of which are bimodally associated with calc-alkaline felsic volcanic rocks.
Resumo:
The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged periods of organic carbon accumulation of the Mesozoic. In this study, we use the molybdenum (Mo) stable isotope system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both locally and globally during the deposition of the KCF. Facies with lower organic carbon contents (TOC 1-7 wt %) were deposited under mildly reducing (suboxic) conditions, while organic-rich facies (TOC >7 wt %) accumulated under more strongly reducing (anoxic or euxinic) local conditions. Trace metal abundances are closely linked to TOC content, suggesting that the intensity of reducing conditions varied repeatedly during the deposition of the KCF and may have been related to orbitally controlled climate changes. Long-term variations in d98/95Mo are associated with the formation of organic-rich intervals and are related to third-order fluctuations in relative sea level. Differences in the mean d98/95Mo composition of the organic-rich intervals suggest that the global distribution of reducing conditions was more extensive during the deposition of the Pectinatites wheatleyensis and lower Pectinatites hudlestoni zones than during the deposition of the upper Pectinatites hudlestoni and Pectinatites pectinatus zones. The global extent of reducing conditions during the Kimmerigidan was greater than today but was less widespread than during the Toarcian (Early Jurassic) oceanic anoxic event. This study also demonstrates that the Mo isotope system in Jurassic seawater responded to changes in redox conditions in a manner consistent with its behavior in present-day sedimentary environments.
(Table 11) Al and Nd concentrations from several HH extractions of sediments from the Atlantic Ocean
Resumo:
Dissolved barium has been shown to have the potential to distinguish Eurasian from North American (NA) river runoff. As part of the ARK-XXII/2 Polarstern expedition in summer 2007, Ba was analyzed in the Barents, Kara, Laptev seas, and the Eurasian Basins as well as the Makarov Basin up to the Alpha and Mendeleyev Ridges. By combining salinity, d18O and initial phosphate corrected for mineralization with oxygen (PO4*) or N/P ratios we identified the water mass fractions of meteoric water, sea ice meltwater, and marine waters of Atlantic as well as Pacific origin in the upper water column. In all basins inside the lower halocline layer and the Arctic intermediate waters we find Ba concentrations close to those of the Fram Strait branch of the lower halocline (41-45 nM), reflecting the composition of the incoming Atlantic water. A layer of upper halocline water (UHW) with higher Ba concentrations (45-55 nM) is identified in the Makarov Basin. Atop of the UHW, the Surface Mixed Layer (SML), including the summer and winter mixed layers, has high concentrations of Ba (58-67 nM). In the SML of the investigated area of the central Arctic the meteoric fraction can be identified by assuming a conservative behavior of Ba to be primarily of Eurasian river origin. However, in productive coastal regions biological removal compromises the use of Ba to distinguish between Eurasian and NA rivers. As a consequence, the NA river water fraction is underestimated in productive surface waters or waters that have passed a productive region, whereas this fraction is overestimated in subsurface waters containing remineralised Ba, particularly when these waters have passed productive shelf regions. Especially in the Laptev Sea and small regions in the Barents Sea, Ba concentrations are low in surface waters. In the Laptev Sea exceptionally high Ba concentrations in shelf bottom waters indicate that Ba is removed from surface waters to deep waters by biological activity enhanced by increasing ice-free conditions as well as by scavenging by organic matter of terrestrial origin. We interpret high Ba concentrations in the UHW of the Makarov Basin to result from enrichment by remineralisation in bottom waters on the shelf of the Chukchi Sea and therefore the calculated NA runoff is an artefact. We conclude that no NA runoff can be demonstrated unequivocally anywhere during our expedition with the set of tracers considered here. Small contributions of NA runoff may have been masked by Ba depletion and could only be resolved by supportive tracers on the uptake history. We thus suggest that Ba has to be used with care as it can put limits but not yield quantitative water mass distributions. Only if the extra Ba inputs exceed the cumulative biological uptake the signal can be unequivocally attributed to NA runoff.