929 resultados para Marginal structural model
Resumo:
We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.
Resumo:
We present experimental results on benchmark problems in 3D cubic lattice structures with the Miyazawa-Jernigan energy function for two local search procedures that utilise the pull-move set: (i) population-based local search (PLS) that traverses the energy landscape with greedy steps towards (potential) local minima followed by upward steps up to a certain level of the objective function; (ii) simulated annealing with a logarithmic cooling schedule (LSA). The parameter settings for PLS are derived from short LSA-runs executed in pre-processing and the procedure utilises tabu lists generated for each member of the population. In terms of the total number of energy function evaluations both methods perform equally well, however. PLS has the potential of being parallelised with an expected speed-up in the region of the population size. Furthermore, both methods require a significant smaller number of function evaluations when compared to Monte Carlo simulations with kink-jump moves. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper introduces the application of linear multivariate statistical techniques, including partial least squares (PLS), canonical correlation analysis (CCA) and reduced rank regression (RRR), into the area of Systems Biology. This new approach aims to extract the important proteins embedded in complex signal transduction pathway models.The analysis is performed on a model of intracellular signalling along the janus-associated kinases/signal transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal transduction pathways in interleukin-6 (IL6) stimulated hepatocytes, which produce signal transducer and activator of transcription factor 3 (STAT3).A region of redundancy within the MAPK pathway that does not affect the STAT3 transcription was identified using CCA. This is the core finding of this analysis and cannot be obtained by inspecting the model by eye. In addition, RRR was found to isolate terms that do not significantly contribute to changes in protein concentrations, while the application of PLS does not provide such a detailed picture by virtue of its construction.This analysis has a similar objective to conventional model reduction techniques with the advantage of maintaining the meaning of the states prior to and after the reduction process. A significant model reduction is performed, with a marginal loss in accuracy, offering a more concise model while maintaining the main influencing factors on the STAT3 transcription.The findings offer a deeper understanding of the reaction terms involved, confirm the relevance of several proteins to the production of Acute Phase Proteins and complement existing findings regarding cross-talk between the two signalling pathways.
Resumo:
The growth sequence of gas-phase cholesterol clusters (Ch(N)) with up to N=36 molecules has been investigated by atomistic simulation based on an empirical force field model. The results of long annealings from high temperature show that the geometric motifs characterizing the structure of pure cholesterol crystals already appear in nanometric aggregates. In all clusters molecules tend to align along a common direction. For cluster sizes above the smallest ones, dispersion interactions among the hydrocarbon body and tails of cholesterol cooperate with hydrogen bonding to give rise to a bilayer structure. Analysis of snapshots from the annealing shows that the condensation of hydrogen bonds into a connected network of rings and chains is an important step in the self-organization of cholesterol clusters. The effect of solvation on the equilibrium properties of medium-size aggregates is investigated by short molecular dynamics simulations for the N=30 and N=40 clusters in water at near ambient conditions and in supercritical carbon dioxide at T=400 K.
Resumo:
We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancillaenvironment subsystems, the entanglement-sharing structure undergoes abrupt modifications associated with a change in the multipartite entanglement class of the overall system's state. These results are invariant with respect to the randomized initial state of the environments.
Resumo:
The present study focused on the role of the Health Belief Model (HBM) in predicting willingness to use functional breads, across four European countries: UK (N = 552), Italy (N = 504), Germany (N = 525) and Finland (N = 513). The behavioural evaluation components of the HBM (the perceived benefits and barriers conceptualized respectively as perceived healthiness and pleasantness) and the health motivation component were good predictors of willingness to use functional breads whereas threat perception components (perceived susceptibility and perceived anticipated severity) failed as predictors. This result was common in all four countries and across products. The role of 'cue to action' was marginal. On the whole the HBM fit was similar across the countries and products in terms of significant predictors (the perceived benefits, barriers and health motivation) with the exception of self-efficacy which was significant only in Finland. Young consumers seemed more interested in the functional bread with a health claim promoting health rather than in reducing risk of disease, whereas the opposite was true for older people. However, functional staple foods, such as bread in this European study, are still perceived as common foods rather than as a means of avoiding diseases. Consumers seek these foods for their healthiness (the perceived benefits) as they expect them to be healthier than regular foods and for the pleasantness (the perceived barriers) as they do not expect any change in the sensory characteristics due to the addition of the functional ingredients. The importance of health motivation in willingness to use products with health claims implies that there is an opening for developing better models for explaining health-promoting food choices that take into account both food and health-related factors without making a reference to disease-related outcome. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Continuous large-scale changes in technology and the globalization of markets have resulted in the need for many SMEs to use innovation as a means of seeking competitive advantage where innovation includes both technological and organizational perspectives (Tapscott, 2009). However, there is a paucity of systematic and empirical research relating to the implementation of innovation management in the context of SMEs. The aim of this article is to redress this imbalance via an empirical study created to develop and test a model of innovation implementation in SMEs. This study uses Structural Equation Modelling (SEM) to test the plausibility of an innovation model, developed from earlier studies, as the basis of a questionnaire survey of 395 SMEs in the UK. The resultant model and construct relationship results are further probed using an explanatory multiple case analysis to explore ‘how’ and ‘why’ type questions within the model and construct relationships. The findings show that the
effects of leadership, people and culture on innovation implementation are mediated by business improvement activities relating to Total Quality Management/Continuous Improvement (TQM/CI) and product and process developments. It is concluded that SMEs have an opportunity to leverage existing quality and process improvement activities to move beyond continuous
improvement outcomes towards effective innovation implementation. The article concludes by suggesting areas suitable for further research.
Resumo:
In this paper, we extend the heterogeneous panel data stationarity test of Hadri [Econometrics Journal, Vol. 3 (2000) pp. 148–161] to the cases where breaks are taken into account. Four models with different patterns of breaks under the null hypothesis are specified. Two of the models have been already proposed by Carrion-i-Silvestre et al.[Econometrics Journal,Vol. 8 (2005) pp. 159–175]. The moments of the statistics corresponding to the four models are derived in closed form via characteristic functions.We also provide the exact moments of a modified statistic that do not asymptotically depend on the location of the break point under the null hypothesis. The cases where the break point is unknown are also considered. For the model with breaks in the level and no time trend and for the model with breaks in the level and in the time trend, Carrion-i-Silvestre et al. [Econometrics Journal, Vol. 8 (2005) pp. 159–175]showed that the number of breaks and their positions may be allowed to differ acrossindividuals for cases with known and unknown breaks. Their results can easily be extended to the proposed modified statistic. The asymptotic distributions of all the statistics proposed are derived under the null hypothesis and are shown to be normally distributed. We show by simulations that our suggested tests have in general good performance in finite samples except the modified test. In an empirical application to the consumer prices of 22 OECD countries during the period from 1953 to 2003, we found evidence of stationarity once a structural break and cross-sectional dependence are accommodated.
Resumo:
A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.
Resumo:
This article applies the panel stationarity test with a break proposed by Hadri and Rao (2008) to examine whether 14 macroeconomic variables of OECD countries can be best represented as random walk or stationary fluctuations around a deterministic trend. In contrast to previous studies, based essentially on visual inspection of the break type or just applying the most general break model, we use a model selection procedure based on BIC. We do this for each time series so that heterogeneous break models are allowed for in the panel. Our results suggest, overwhelmingly, that if we account for a structural break, cross-sectional dependence and choose the break models to be congruent with the data, then the null of stationarity cannot be rejected for all the 14 macroeconomic variables examined in this article. This is in sharp contrast with the results obtained by Hurlin (2004), using the same data but a different methodology.
Resumo:
We perform a study of the energetics of KH2PO4 (KDP) by using a shell model (SM) which was constructed by adjusting the interaction parameters to ab initio calculations, and was fitted to reproduce phonons, polarization-inversion energies and structural properties. We calculate the energy profiles by performing global displacements and local distortions following the ferroelectric (FE) mode pattern in clusters of different sizes embedded in a paraelectric (PE) phase matrix. These properties are expected to be relevant to the PE-FE phase transition. The obtained SM results are compared to corresponding ab initio (AI) data. The global instabilities are found in good agreement for both KDP and DKDP. We also find qualitative good agreement in the KDP structure and even quantitative agreement in the expanded DKDP structure for the local distortions. The SM results reproduce well different trends like increasing instabilities as the cluster sizes grows, as the heavier atoms are included, and as the volume is increased, in accordance with the corresponding data from AI calculations.
Resumo:
The extreme 3'-ends of human telomeres consist of 150–250 nucleotides of single-stranded DNA sequence together with associated proteins. Small-molecule ligands can compete with these proteins and induce a conformational change in the DNA to a four-stranded quadruplex arrangement, which is also no longer a substrate for the telomerase enzyme. The modified telomere ends provide signals to the DNA-damage-response system and trigger senescence and apoptosis. Experimental structural data are available on such quadruplex complexes comprising up to four telomeric DNA repeats, but not on longer systems that are more directly relevant to the single-stranded overhang in human cells. The present paper reports on a molecular modelling study that uses Molecular Dynamics simulation methods to build dimer and tetramer quadruplex repeats. These incorporate ligand-binding sites and are models for overhang–ligand complexes.
Resumo:
Silicone elastomer systems have previously been shown to offer potential for the sustained release of protein therapeutics. However, the general requirement for the incorporation of large amounts of release enhancing solid excipients to achieve therapeutically effective release rates from these otherwise hydrophobic polymer systems can detrimentally affect the viscosity of the precure silicone elastomer mixture and its curing characteristics. The increase in viscosity necessitates the use of higher operating pressures in manufacture, resulting in higher shear stresses that are often detrimental to the structural integrity of the incorporated protein. The addition of liquid silicones increases the initial tan delta value and the tan delta values in the early stages of curing by increasing the liquid character (G '') of the silicone elastomer system and reducing its elastic character (G'), thereby reducing the shear stress placed on the formulation during manufacture and minimizing the potential for protein degradation. However, SEM analysis has demonstrated that if the liquid character of the silicone elastomer is too high, the formulation will be unable to fill the mold during manufacture. This study demonstrates that incorporation of liquid hydroxy-terminated polydimethylsiloxanes into addition-cure silicone elastomer-covered rod formulations can both effectively lower the viscosity of the precured silicone elastomer and enhance the release rate of the model therapeutic protein bovine serum albumin. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Resumo:
Two semianalytical relations [Nature, 1996, 381, 137 and Phys. Rev. Lett. 2001, 87, 245901] predicting dynamical coefficients of simple liquids on the basis of structural properties have been tested by extensive molecular dynamics simulations for an idealized 2:1 model molten salt. In agreement with previous simulation studies, our results support the validity of the relation expressing the self-diffusion coefficient as a Function of the radial distribution functions for all thermodynamic conditions such that the system is in the ionic (ie., fully dissociated) liquid state. Deviations are apparent for high-density samples in the amorphous state and in the low-density, low-temperature range, when ions condense into AB(2) molecules. A similar relation predicting the ionic conductivity is only partially validated by our data. The simulation results, covering 210 distinct thermodynamic states, represent an extended database to tune and validate semianalytical theories of dynamical properties and provide a baseline for the interpretation of properties of more complex systems such as the room-temperature ionic liquids.