989 resultados para MO-106
Resumo:
Fil: Macciuci, Raquel. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Fil: Macciuci, Raquel. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
In Snake Pit massive sulfide fragments and friable, unconsolidated material recovered during ODP Leg 106, isocubanite and pyrite are generally the predominant phases, followed by marcasite, chalcopyrite, sphalerite, and pyrrhotite. Detailed analyses of paragenetic relations of minerals indicate that isocubanite first precipitated together with pyrrhotite. With decreasing temperature, chalcopyrite and sphalerite precipitated, and at the latest stage colloform sphalerite-pyrite (or colloform marcasite) formed. Isocubanite usually has exsolution lamellae of chalcopyrite and less commonly of pyrrhotite. The average bulk chemical composition of the friable, unconsolidated material indicates that it is rich in copper, reflecting the dominance of isocubanite in the specimens, and is characterized by high Co, low Pb, and Ag contents. Sulfur isotope ratios are very uniform, ranging in d34S from +1.2 to +2.8 per mil. The obtained values are apparently low, compared to those for the eastern Pacific sulfide samples, reflecting a smaller contribution of seawater sulfate in the Snake Pit sulfide deposit.
Resumo:
Distribution of Fe, Mn, Ti, Cu, Ni, Co, V, Cr, Mo, As in bottom sediments of a section from the Hawaiian Islands to the coast of Mexico. In the surface layer and isochronic layers of sediments from biogenic-terrigenous sediments of the Mexico coast to pelagic red clays of the Northeast Basin contents of all studied elements increase, and more sharply for mobile ones - Mn, Mo, Cu, Ni, Co, As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basalt composition enriched in Ti, Fe, Cr, V, P contents of these elements in surface sediments and in sediment mass increase and contents of Mn, Mo, Ni, Co, Cu, As (for the same reason) decrease compared to red clays. An area of hemipelagic and transition sediments is identified; these sediments have much higher contents of Mn, Fe, Cu, Ni, Mo, As, (Ba) than red clays and similar sediments of the Northwest Pacific Ocean. This is due to hydrothermal activity in the tectonically active zone at the northern extension of the East Pacific Rise. Similar character of distribution of the elements in the surface layer and in the isochrone layers of bottom sediments along the most part of the section is shown. Similarity between distribution of the elements in sediments of the western and the eastern parts of the Transpacific section is established.