987 resultados para MESSENGER-RNAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os tripanossomatídeos possuem uma combinação não usual de mecanismos moleculares, e seus processos de regulação de expressão gênica ocorreram a nível pós-transcricional. Acredita-se que essa regulação envolva tanto o controle da estabilidade dos mRNAs, como sua tradução em proteínas, eventos em que atua a proteína de ligação à cauda poli-A (PABP - Poly-A Binding Protein), uma das principais proteínas de ligação a RNAs em eucariotos. Um grande número destas proteínas está presente nos tripanosomatídeos, se caracterizando por possuírem domínios típicos de ligação a RNA, como o domínio RRM (RNA Recognition Motif). Dentre estas se destacam as proteínas de ligação a sequências ricas em uridina (UBPs), que se mostraram capazes de interagir com homólogos de PABP. Outras proteínas hipotéticas contendo domínios de ligação a RNA foram identificadas em ensaios que buscavam parceiros diferenciais para os três homólogos de PABP de Leishmania. Este trabalho se propôs a contribuir na caracterização funcional das proteínas UBPs e das proteínas hipotéticas, através da otimização de sua expressão de forma heteróloga em L. infantum, fusionadas ao epítopo HA. Para isto, os genes codificantes dos três homólogos de UBPs, e de cinco outras proteínas de ligação a RNA que parecem interagir com PABPs, foram amplificados e clonados em vetor de expressão de Leishmania. As construções geradas foram transfectadas em L. infantum e a expressão de seis destas proteínas avaliada. Os resultados obtidos mostram uma variação no reconhecimento das proteínas geradas com anticorpos comerciais anti-HA, que parecem depender da sequência de aminoácidos da sua extremidade C-terminal. Diferenças significativas nos seus níveis de expressão também foram observadas. Entre os três homólogos de UBP, dois destes se mostraram mais abundantes enquanto que os três são representados por mais de uma banda, indicando possíveis modificações pós-traducionais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, sub ject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other’s growth and encourage the other’s demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive peer-to-peer communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potency of RNA interference (RNAi) undoubtedly can be improved through chemical modifications to the small interfering RNAs (siRNA). By incorporation of the 3′-S-phosphorothiolate modification into strands of RNA, it is hoped that specific regions of a siRNA duplex can be stabilised to enhance the target binding affinity of a selected antisense strand into the activated RNA-induced silencing complex (RISC*). Oligonucleotides composed entirely of this modification are desirable so unconventional 5′ → 3′ synthesis is investigated, with initial solution-phase testing proving successful. The phosphoroamidite monomer required for solid-phase synthesis has also been produced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The objective of this study was to explore the relationship between low density lipoprotein (LDL) and dendritic cell (DC) activation, based upon the hypothesis that reactive oxygen species (ROS)-mediated modification of proteins that may be present in local DC microenvironments could be important as mediators of this activation. Although LDL are known to be oxidised in vivo, and taken up by macrophages during atherogenesis; their effect on DC has not been explored previously. Methods: Human DCs were prepared from peripheral blood monocytes using GM-CSF and IL-4. Plasma LDLs were isolated by sequential gradient centrifugation, oxidised in CuSO4, and oxidation arrested to yield mild, moderate and highly oxidised LDL forms. DCs exposed to these LDLs were investigated using combined phenotypic, functional (autologous T cell activation), morphological and viability assays. Results: Highly-oxidised LDL increased DC HLA-DR, CD40 and CD86 expression, corroborated by increased DC-induced T cell proliferation. Both native and oxidised LDL induced prominent DC clustering. However, high concentrations of highly-oxidised LDL inhibited DC function, due to increased DC apoptosis. Conclusions: This study supports the hypothesis that oxidised LDL are capable of triggering the transition from sentinel to messenger DC. Furthermore, the DC clustering–activation–apoptosis sequence in the presence of different LDL forms is consistent with a regulatory DC role in immunopathogenesis of atheroma. A sequence of initial accumulation of DC, increasing LDL oxidation, and DC-induced T cell activation, may explain why local breach of tolerance can occur. Above a threshold level, however, supervening DC apoptosis limits this, contributing instead to the central plaque core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana ‘Landsberg erecta’ plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant’s resilience to fluctuating relative humidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. We hypothesized that PAR2-mediated mechanical hyperalgesia requires sensitization of the ion channel transient receptor potential vanilloid 4 (TRPV4). Immunoreactive TRPV4 was coexpressed by rat dorsal root ganglia (DRG) neurons with PAR2, substance P (SP) and calcitonin gene-related peptide (CGRP), mediators of pain transmission. In PAR2-expressing cell lines that either naturally expressed TRPV4 (bronchial epithelial cells) or that were transfected to express TRPV4 (HEK cells), pretreatment with a PAR2 agonist enhanced Ca2+ and current responses to the TRPV4 agonists phorbol ester 4alpha-phorbol 12,13-didecanoate (4alphaPDD) and hypotonic solutions. PAR2-agonist similarly sensitized TRPV4 Ca2+ signals and currents in DRG neurons. Antagonists of phospholipase Cbeta and protein kinases A, C and D inhibited PAR2-induced sensitization of TRPV4 Ca2+ signals and currents. 4alphaPDD and hypotonic solutions stimulated SP and CGRP release from dorsal horn of rat spinal cord, and pretreatment with PAR2 agonist sensitized TRPV4-dependent peptide release. Intraplantar injection of PAR2 agonist caused mechanical hyperalgesia in mice and sensitized pain responses to the TRPV4 agonists 4alphaPDD and hypotonic solutions. Deletion of TRPV4 prevented PAR2 agonist-induced mechanical hyperalgesia and sensitization. This novel mechanism, by which PAR2 activates a second messenger to sensitize TRPV4-dependent release of nociceptive peptides and induce mechanical hyperalgesia, may underlie inflammatory hyperalgesia in diseases where proteases are activated and released.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS: We studied the role of protease-activated receptor 2 (PAR(2)) and its activating enzymes, trypsins and tryptase, in Clostridium difficile toxin A (TxA)-induced enteritis. METHODS: We injected TxA into ileal loops in PAR(2) or dipeptidyl peptidase I (DPPI) knockout mice or in wild-type mice pretreated with tryptase inhibitors (FUT-175 or MPI-0442352) or soybean trypsin inhibitor. We examined the effect of TxA on expression and activity of PAR(2) and trypsin IV messenger RNA in the ileum and cultured colonocytes. We injected activating peptide (AP), trypsins, tryptase, and p23 in wild-type mice, some pretreated with the neurokinin 1 receptor antagonist SR140333. RESULTS: TxA increased fluid secretion, myeloperoxidase activity in fluid and tissue, and histologic damage. PAR(2) deletion decreased TxA-induced ileitis, reduced luminal fluid secretion by 20%, decreased tissue and fluid myeloperoxidase by 50%, and diminished epithelial damage, edema, and neutrophil infiltration. DPPI deletion reduced secretion by 20% and fluid myeloperoxidase by 55%. In wild-type mice, FUT-175 or MPI-0442352 inhibited secretion by 24%-28% and tissue and fluid myeloperoxidase by 31%-71%. Soybean trypsin inhibitor reduced secretion to background levels and tissue myeloperoxidase by up to 50%. TxA increased expression of PAR(2) and trypsin IV in enterocytes and colonocytes and caused a 2-fold increase in Ca(2+) responses to PAR(2) AP. AP, tryptase, and trypsin isozymes (trypsin I/II, trypsin IV, p23) caused ileitis. SR140333 prevented AP-induced ileitis. CONCLUSIONS: PAR(2) and its activators are proinflammatory in TxA-induced enteritis. TxA stimulates existing PAR(2) and up-regulates PAR(2) and activating proteases, and PAR(2) causes inflammation by neurogenic mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular signal-regulated kinases 1/2 (ERK1/2) and their substrates, p90 ribosomal S6 kinases (RSKs), phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes, ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. Here, we investigated the role of RSKs in the transcriptomic responses to Gq protein-coupled receptor agonists, endothelin-1, phenylephrine (generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2-3 min of stimulation (endothelin-1>a61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of 213 RNAs upregulated at 1 h, 51% required RSKs for upregulation whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical to, endothelin-1. As with endothelin-1, PD184352 inhibited upregulation of most phenylephrine-responsive transcripts, but the greater variation in effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, upregulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus, RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq protein-coupled receptor stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the heart, inflammatory cytokines including interleukin (IL) 1β are implicated in regulating adaptive and maladaptive changes, whereas IL33 negatively regulates cardiomyocyte hypertrophy and promotes cardioprotection. These agonists signal through a common co-receptor but, in cardiomyocytes, IL1β more potently activates mitogen-activated protein kinases and NFκB, pathways that regulate gene expression. We compared the effects of external application of IL1β and IL33 on the cardiomyocyte transcriptome. Neonatal rat cardiomyocytes were exposed to IL1β or IL33 (0.5, 1 or 2h). Transcriptomic profiles were determined using Affymetrix rat genome 230 2.0 microarrays and data were validated by quantitative PCR. IL1β induced significant changes in more RNAs than IL33 and, generally, to a greater degree. It also had a significantly greater effect in downregulating mRNAs and in regulating mRNAs associated with selected pathways. IL33 had a greater effect on a small, select group of specific transcripts. Thus, differences in intensity of intracellular signals can deliver qualitatively different responses. Quantitatively different responses in production of receptor agonists and transcription factors may contribute to qualitative differences at later times resulting in different phenotypic cellular responses.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease (HD) is a devastating disorder that affects approximately 1 in 10,000 people and is accompanied by neuronal dysfunction and neurodegeneration. HD manifests as a progressive chorea, a decline in mental abilities accompanied by behavioural, emotional and psychiatric problems followed by, dementia, and ultimately, death. The molecular pathology of HD is complex but includes widespread transcriptional dysregulation. Although many transcriptional regulatory molecules have been implicated in the pathogenesis of HD, a growing body of evidence points to the pivotal role of RE1 Silencing Transcription Factor (REST). In HD, REST, translocates from the cytoplasm to the nucleus in neurons resulting in repression of key target genes such as BDNF. Since these original observations, several thousand direct target genes of REST have been identified, including numerous non-coding RNAs including both microRNAs and long non-coding RNAs, several of which are dysregulated in HD. More recently, evidence is emerging that hints at epigenetic abnormalities in HD brain. This in turn, promotes the notion that targeting the epigenetic machinery may be a useful strategy for treatment of some aspects of HD. REST also recruits a host of histone and chromatin modifying activities that can regulate the local epigenetic signature at REST target genes. Collectively, these observations present REST as a hub that coordinates transcriptional, posttranscriptional and epigenetic programmes, many of which are disrupted in HD. We identify several spokes emanating from this REST hub that may represent useful sites to redress REST dysfunction in HD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protease activated receptor-2 (PAR-2) belongs to a family of G-protein-coupled receptors that are activated by proteolysis. Trypsin cleaves PAR-2, exposing an N-terminal tethered ligand (SLIGRL) that activates the receptor. Messenger RNA (mRNA) for PAR-2 was found in guinea pig airway tissue by reverse transcription-polymerase chain reaction, and PAR-2 was found by immunohistochemistry in airway epithelial and smooth-muscle cells. In anesthetized guinea pigs, trypsin and SLIGRL-NH(2) (given intratracheally or intravenously) caused a bronchoconstriction that was inhibited by the combination of tachykinin-NK(1) and -NK(2) receptor antagonists and was potentiated by inhibition of nitric oxide synthase (NOS). Trypsin and SLIGRL-NH(2) relaxed isolated trachea and main bronchi, and contracted intrapulmonary bronchi. Relaxation of main bronchi was abolished or reversed to contraction by removal of epithelium, administration of indomethacin, and NOS inhibition. PAR-1, PAR-3, and PAR-4 were not involved in the bronchomotor action of either trypsin or SLIGRL-NH(2), because ligands of these receptors were inactive either in vitro or in vivo, and because thrombin (a PAR-1 and PAR-3 agonist) did not show cross-desensitization with PAR-2 agonists in vivo. Thus, we have localized PAR-2 to the guinea-pig airways, and have shown that activation of PAR-2 causes multiple motor effects in these airways, including in vivo bronchoconstriction, which is in part mediated by a neural mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.