957 resultados para Lower temperatures
Resumo:
The activity of Cr20~ in Cr20~-A12Oa solid solution has been determined in the temperature range 800~176 from electromotive force measurements on the solid oxide galvanic cell Pt,Cr + Cr2OJY~O~-ThO2/Cr + Cr~A12-xO~,Pt The activities of Cr203 and A120~ in the solid solution show both positive and negative deviations from Raoult's law. The heat and entropy of mixing of the solid Solution obtained from the temperature dependence of the emf can be expressed as AH = XCr203XA1203 [31,700Xcrzo3 -}- 37,470XA1203] J mole -I hS = -- 1.8R [Xcr2o3 In Xcr2o3 + XA12o3 In XAaos]The entropy of mixing is 10% lower than that predicted by the Temkin model.The large positive heat of mixing in the Cr2Os-A12Oa solid solution, however, suggests that this apparent: entropy discrepancy originates with the clustering of positive ions on the cation sublattice. The asymmetric miscibility gap exhibited in the CrzOa-A12Oa system below 900~ is consistent with the thermodynamic data trends recorded at the more elevated temperatures.
Resumo:
On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.
Resumo:
The standard Gibbs energy of formation of ReO2 in the temperature range from 900 to 1200 K has been determined with high precision using a novel apparatus incorporating a buffer electrode between reference and working electrodes. The role of the buffer electrode was to absorb the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential. It prevented the polarization of the measuring electrode and ensured accurate data. The Re+ReO2 working electrode was placed in a closed stabilized-zirconia crucible to prevent continuous vaporization of Re2O7 at high temperatures. The standard Gibbs energy of the formation of ReO2 can be represented by the equation View the MathML source Accurate values of low and high temperature heat capacity of ReO2 are available in the literature. The thermal data are coupled with the standard Gibbs energy of formation, obtained in this study, to evaluate the standard enthalpy of formation of ReO2 at 298.15 K by the ‘third law’ method. The value of standard enthalpy of formation at 298.15 K is: View the MathML source(ReO2)/kJ mol−1=−445.1 (±0.2). The uncertainty estimate includes both random (2σ) and systematic errors.
Resumo:
Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.
Resumo:
The simple dialkyl oxalates are generally liquids at room temperature except for dimethyl and di-tert-butyl oxalate which melt at 327 and 343 K. The crystal structures of diethyl, di-iso-propyl, di-n-butyl, di-tert-butyl and methyl ethyl oxalates were determined. The liquid esters were crystallized using the cryocrystallization technique. A comparison of the intermolecular interactions and packing features in these crystal structures was carried out. The crystal structure of dimethyl oxalate was redetermined at various temperatures. The other compounds were also studied at several temperatures in order to assess the attractive nature of the hydrogen bonds therein. A number of moderate to well defined C-H center dot center dot center dot O interactions account for the higher melting points of the two solid esters. Additionally, a diminished entropic contribution Delta S(m) in di-tert-butyl oxalate possibly increases the melting point of this compound further.
Resumo:
Direction Of Arrival (DOA) estimation, using a sensor array, in the presence of non-Gaussian noise using Fractional Lower-Order Moments (FLOM)matrices is studied. In this paper, a new FLOM based technique using the Fractional Lower Order Infinity Norm based Covariance (FLIC) Matrix is proposed. The bounded property and the low-rank subspace structure of the FLIC matrix is derived. Performance of FLIC based DOA estimation using MUSIC, ESPRIT, is shown to be better than other FLOM based methods.
Resumo:
Base metal substituted Sn(0.95)M(0.05)O(2-delta) (M = Cu, Fe, Mn, Co) catalysts were synthesized by the solution combustion method and characterized by XRD, XPS, TEM and BET surface area analysis. The catalytic activities of these materials were investigated by performing CO oxidation. The rates and the apparent activation energies of the reaction for CO oxidation were determined for each catalyst. All the substituted catalysts showed high rates and lower activation energies for the oxidation of CO as compared to unsubstituted SnO(2). The rate was found to be much higher over copper substituted SnO(2) as compared to other studied catalysts. 100% CO conversion was obtained below 225 degrees C over this catalyst. A bifunctional reaction mechanism was developed that accounts for CO adsorption on base metal and support ions and O(2) dissociation on the oxide ion vacancy. The kinetic parameters were determined by fitting the model to the experimental data. The high rates of the CO oxidation reactions at low temperatures were rationalized by the high dissociative chemisorption of adsorbed O(2) over these catalysts.
Resumo:
This paper deals with the characterisation of tar from two configurations of bioresidue thermochemical conversion reactors designed for producer gas based power generation systems. The pulverised fuel reactor is a cyclone system (R1) and the solid bioresidue reactor (denoted R2) is an open top twin air entry system both at 75-90 kg/h capacity (to generate electricity similar to 100 kVA). The reactor, R2, has undergone rigorous test in a major Indo-Swiss programme for the tar quantity at various conditions. The former is a recent technology development. Tars collected from these systems by a standard tar collection apparatus at the laboratory at Indian Institute of Science have been analysed at the Royal Institute of Technology (KTH), Sweden. The results of these analyses show that these thermochemical conversion reactors behave differently from the earlier reactors reported in literature in so far as tar generation is concerned. The extent of tar in hot gas is about 700-800 ppm for R1 and 70-100 ppm for R2. The amounts of the major compounds - naphthalene and phenol-are much lower that what is generally understood to happen in the gasifiers in Europe. It is suggested that the longer residence times at high temperatures allowed for in these reactors is responsible for this behavior. It is concluded the new generation reactor concepts extensively tried out at lower power levels hold promise for high power atmospheric gasification systems for woody as well as pulverisable bioresidues.
Resumo:
This lecture describes some recent attempts at unravelling the mechanics of the temperature distribution near ground, especially during calm, clear nights. In particular, a resolution is offered of the so-called Ramdas paradox, connected with observations of a temperature minimum some decimetres above bare soil on calm clear nights, in apparent defiance of the Rayleigh criterion for instability due to thermal convection. The dynamics of the associated temperature distribution is governed by radiative and convective transport and by thermal conduction, and is characterised by two time constants, involving respectively quick radiative adjustments and slow diffusive relaxation. The theory underlying the work described here suggests that surface parameters like ground emissivity and soil thermal conductivity can exert appreciable influence on the development of nocturnal inversions.
Resumo:
We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.
Resumo:
This paper reports improved performance of discharge plasma in raw engine exhaust treatment. For the purpose of investigation, both filtered and raw diesel engine exhaust were separately treated by the discharge plasma. In raw exhaust environment, the discharge plasma exhibits a superior performance with regard to NOx removal, energy consumption and formation of by-products. In this study, experiments were conducted at conditions of different temperatures and loads.
Resumo:
Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10(12) K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report here the development of ultrafine grained ZrB2-SiC composites using TiSi2 as the sintering aid and spark plasma sintering (SPS) as the processing technique. It was observed that the presence of TiSi2 improved the sinterability of the composites, such that near theoretical densification (99.9%) could be achieved for ZrB2-18 wt.% SiC-5 wt.% TiSi2 composites after SPS at 1600 degrees C for 10 min at 50 MPa. Use of innovative multi stage sintering (MSS) route, which involved holding the samples at lower (intermediate) temperatures for some time before holding at the final temperature, while keeping the net holding time to 10 min, allowed attainment of full densification of ZrB2-18 wt.% SiC-2.5 wt.% TiSi2 at a still lower final temperature of 1500 degrees C at 30 MPa. TEM observations, which revealed the presence of anisotropic ZrB2 grains with faceted grain boundaries and TiSi2 at the intergranular regions, suggested the occurrence of liquid phase sintering in the presence of TiSi2. No additional phase was detected in XRD as well as TEM, which confirmed the absence of any sintering reaction. The as developed composites possessed an excellent combination of Vickers hardness and indentation toughness, both of which increased with increase in TiSi2 content, such that the ZrBi2-18 wt.% SiC-5 wt.% TiSi2 (SPS processed at 1600 degrees C) possessed hardness of similar to 20 GPa and indentation toughness of similar to 5 MPa m(1/2). The use of MSS SPS at 1500 degrees C for ZrBi2-18 wt.% SiC-2.5 wt.% TiSi2 composite resulted in improvement in hardness of up to similar to 27 GPa and attainment of high flexural strength of similar to 455 MPa. (C) 2011 Elsevier B.V. All rights reserved.