971 resultados para LiteSteel beams


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imaging of biological samples has been performed with a variety of techniques for example electromagnetic waves, electrons, neutrons, ultrasound and X-rays. Also conventional X-ray imaging represents the basis of medical diagnostic imaging, it remains of limited use in this application because it is based solely on the differential absorption of X-rays by tissues. Coherent and bright photon beams, such as those produced by third-generation synchrotron X-ray sources, provide further information on subtle X-ray phase changes at matter interfaces. This complements conventional X-ray absorption by edge enhancement phenomena. Thus, phase contrast imaging has the potential to improve the detection of structures on images by detecting those structures that are invisible with X-ray absorption imaging. Images of a weakly absorbing nylon fibre were recorded in in-line holography geometry using a high resolution low-noise CCD camera at the ESRF in Grenoble. The method was also applied to improve image contrast for images of biological tissues. This paper presents phase contrast microradiographs of vascular tree casts and images of a housefly. These reveal very fine structures, that remain invisible with conventional absorption contrast only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Daily use of conventional electronic portal imaging devices (EPID) for organ tracking is limited due to the relatively high dose required for high quality image acquisition. We studied the use of a novel dose saving acquisition mode (RadMode) allowing to take images with one monitor unit per image in prostate cancer patients undergoing intensity-modulated radiotherapy (IMRT) and tracking of implanted fiducial gold markers. PATIENTS AND METHODS: Twenty five patients underwent implantation of three fiducial gold markers prior to the planning CT. Before each treatment of a course of 37 fractions, orthogonal localization images from the antero-posterior and from the lateral direction were acquired. Portal images of both the setup procedure and the five IMRT treatment beams were analyzed. RESULTS: On average, four localization images were needed for a correct patient setup, resulting in four monitor units extra dose per fraction. The mean extra dose delivered to the patient was thereby increased by 1.2%. The procedure was precise enough to reduce the mean displacements prior to treatment to < o =0.3 mm. CONCLUSIONS: The use of a new dose saving acquisition mode enables to perform daily EPID-based prostate tracking with a cumulative extra dose of below 1 Gy. This concept is efficiently used in IMRT-treated patients, where separation of setup beams from treatment beams is mandatory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbeam radiation therapy (MRT), a form of experimental radiosurgery of tumours using multiple parallel, planar, micrometres-wide, synchrotron-generated X-ray beams ('microbeams'), can safely deliver radiation doses to contiguous normal animal tissues that are much higher than the maximum doses tolerated by the same normal tissues of animals or patients from any standard millimetres-wide radiosurgical beam. An array of parallel microbeams, even in doses that cause little damage to radiosensitive developing tissues, for example, the chick chorioallantoic membrane, can inhibit growth or ablate some transplanted malignant tumours in rodents. The cerebella of 100 normal 20 to 38g suckling Sprague-Dawley rat pups and of 13 normal 5 to 12kg weanling Yorkshire piglets were irradiated with an array of parallel, synchrotron-wiggler-generated X-ray microbeams in doses overlapping the MRT-relevant range (about 50-600Gy) using the ID17 wiggler beamline tangential to the 6GeV electron synchrotron ring at the European Synchrotron Radiation Facility in Grenoble, France. Subsequent favourable development of most animals over at least 1 year suggests that MRT might be used to treat children's brain tumours with less risk to the development of the central nervous system than is presently the case when using wider beams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby, comparisons are performed between MC calculated dose distributions and those calculated by a pencil beam or the AAA algorithm. Interfacing this flexible and efficient MC environment with Eclipse allows a widespread use for all kinds of investigations from timing and benchmarking studies to clinical patient studies. Additionally, it is possible to add modules keeping the system highly flexible and efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One limitation to the widespread implementation of Monte Carlo (MC) patient dose-calculation algorithms for radiotherapy is the lack of a general and accurate source model of the accelerator radiation source. Our aim in this work is to investigate the sensitivity of the photon-beam subsource distributions in a MC source model (with target, primary collimator, and flattening filter photon subsources and an electron subsource) for 6- and 18-MV photon beams when the energy and radial distributions of initial electrons striking a linac target change. For this purpose, phase-space data (PSD) was calculated for various mean electron energies striking the target, various normally distributed electron energy spread, and various normally distributed electron radial intensity distributions. All PSD was analyzed in terms of energy, fluence, and energy fluence distributions, which were compared between the different parameter sets. The energy spread was found to have a negligible influence on the subsource distributions. The mean energy and radial intensity significantly changed the target subsource distribution shapes and intensities. For the primary collimator and flattening filter subsources, the distribution shapes of the fluence and energy fluence changed little for different mean electron energies striking the target, however, their relative intensity compared with the target subsource change, which can be accounted for by a scaling factor. This study indicates that adjustments to MC source models can likely be limited to adjusting the target subsource in conjunction with scaling the relative intensity and energy spectrum of the primary collimator, flattening filter, and electron subsources when the energy and radial distributions of the initial electron-beam change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1 x 1 to 30 x 30 cm2 as well as a 10 x 10 cm2 field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within +/-1% or 1 mm for the target, within 2% or 2 mm for the primary collimator, and within +/-2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model-including a charged particle source and the full PSD as input-was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The verification possibilities of dynamically collimated treatment beams with a scanning liquid ionization chamber electronic portal image device (SLIC-EPID) are investigated. The ion concentration in the liquid of a SLIC-EPID and therefore the read-out signal is determined by two parameters of a differential equation describing the creation and recombination of the ions. Due to the form of this equation, the portal image detector describes a nonlinear dynamic system with memory. In this work, the parameters of the differential equation were experimentally determined for the particular chamber in use and for an incident open 6 MV photon beam. The mathematical description of the ion concentration was then used to predict portal images of intensity-modulated photon beams produced by a dynamic delivery technique, the sliding window approach. Due to the nature of the differential equation, a mathematical condition for 'reliable leaf motion verification' in the sliding window technique can be formulated. It is shown that the time constants for both formation and decay of the equilibrium concentration in the chamber is in the order of seconds. In order to guarantee reliable leaf motion verification, these time constants impose a constraint on the rapidity of the image-read out for a given maximum leaf speed. For a leaf speed of 2 cm s(-1), a minimum image acquisition frequency of about 2 Hz is required. Current SLIC-EPID systems are usually too slow since they need about a second to acquire a portal image. However, if the condition is fulfilled, the memory property of the system can be used to reconstruct the leaf motion. It is shown that a simple edge detecting algorithm can be employed to determine the leaf positions. The method is also very robust against image noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today electronic portal imaging devices (EPID's) are used primarily to verify patient positioning. They have, however, also the potential as 2D-dosimeters and could be used as such for transit dosimetry or dose reconstruction. It has been proven that such devices, especially liquid filled ionization chambers, have a stable dose response relationship which can be described in terms of the physical properties of the EPID and the pulsed linac radiation. For absolute dosimetry however, an accurate method of calibration to an absolute dose is needed. In this work, we concentrate on calibration against dose in a homogeneous water phantom. Using a Monte Carlo model of the detector we calculated dose spread kernels in units of absolute dose per incident energy fluence and compared them to calculated dose spread kernels in water at different depths. The energy of the incident pencil beams varied between 0.5 and 18 MeV. At the depth of dose maximum in water for a 6 MV beam (1.5 cm) and for a 18 MV beam (3.0 cm) we observed large absolute differences between water and detector dose above an incident energy of 4 MeV but only small relative differences in the most frequent energy range of the beam energy spectra. It is shown that for a 6 MV beam the absolute reference dose measured at 1.5 cm water depth differs from the absolute detector dose by 3.8%. At depth 1.2 cm in water, however, the relative dose differences are almost constant between 2 and 6 MeV. The effects of changes in the energy spectrum of the beam on the dose responses in water and in the detector are also investigated. We show that differences larger than 2% can occur for different beam qualities of the incident photon beam behind water slabs of different thicknesses. It is therefore concluded that for high-precision dosimetry such effects have to be taken into account. Nevertheless, the precise information about the dose response of the detector provided in this Monte Carlo study forms the basis of extracting directly the basic radiometric quantities photon fluence and photon energy fluence from the detector's signal using a deconvolution algorithm. The results are therefore promising for future application in absolute transit dosimetry and absolute dose reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In external beam radiotherapy, electronic portal imaging becomes more and more an indispensable tool for the verification of the patient setup. For the safe clinical introduction of high dose conformal radiotherapy like intensity modulated radiation therapy, on-line patient setup verification is a prerequisite to ensure that the planned dosimetric coverage of the tumor volume is actually realized in the patient. Since the direction of setup fields often deviates from the direction of the treatment beams, extra dose is delivered to the patient during the acquisition of these portal images which may reach clinical relevance. The aim of this work was to develop a new acquisition mode for the PortalVision aS500 electronic portal imaging device from Varian Medical Systems that allows one to take portal images with reduced dose while keeping good image quality. The new acquisition mode, called RadMode, selectively enables and disables beam pulses during image acquisition allowing one to stop wasting valuable dose during the initial acquisition of "reset frames." Images of excellent quality can be taken with 1 MU only. This low dose per image facilitates daily setup verification with considerably reduced extra dose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hooked reinforcing bars (rebar) are used frequently to carry the tension forces developed in beams and transferred to columns. Research into epoxy coated hooked bars has only been minimally performed and no research has been carried out incorporating the coating process found in ASTM A934. This research program compares hooked rebar that are uncoated, coated by ASTM A775, and coated by ASTM A934. In total, forty-two full size beam-column specimens were created, instrumented and tested to failure. The program was carried out in three phases. The first phase was used to refine the test setup and procedures. Phase two explored the spacing of column ties within the joint region. Phase three explored the three coating types found above. Each specimen included two hooked rebar which were loaded and measured independently for relative rebar slip. The load and displacement of the hooked rebar were analyzed, focusing on behavior at the levels of 30 ksi, 42 ksi and 60 ksi of rebar stress. Statistical and general comparisons were made using the coating types, tie spacing, and rebar stress level. Many of the parameters composing the rebar and concrete were also tested to characterize the components and specimens. All rebar tested met ASTM standards for tensile strength, but the newer ASTM A934 method seemed to produce slightly lower yield strengths. The A934 method also produced coating thicknesses that were very inconsistent and were higher than ASTM maximum limits in many locations. Continuity of coating surfaces was found to be less than 100% for both A775 and A934 rebar, but for different reasons. The many comparisons made did not always produce clear conclusions. The data suggests that the ACI Code (318-05) parameter of 1.2 for including epoxy coating on hooked rebar may need to be raised, possibly to 2.5, but more testing needs to be performed before such a large value change is set forth. This is particularly important as variables were identified which may have a larger influence on rebar capacity than the Development Length, of which the current 1.2 factor modifies. Many suggestions for future work are included throughout the thesis to help guide other researchers in carrying out successful and productive programs which will further the highly understudied topic of hooked rebar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today the use of concrete ties is on the rise in North America as they become an economically competitive alternative to the historical industry standard wood ties, while providing performance which exceeds its competition in terms of durability and capacity. Similarly, in response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity while making it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will in turn affect the performance requirements of the track. Due to the increased loads heavy haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie design through an investigation of prestressing quantity, configuration, stress levels and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. However, researchers also found that current design specifications and procedures do not include consideration of tie behavior beyond the current tie capacity limit of cracking to the first layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of development length were absent from specified design procedures, but discussed in this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft’s orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any ground station. For this reason, it is suggested that each satellite in the constellation be equipped with power storage components so that it can store power for later transmission. This thesis presents a method for designing the solar power constellation orbits such that the number of ground stations visited during the given revisit period is maximized. This leads to maximizing the power transmission to ground stations.