950 resultados para Linear perturbation theory,
Resumo:
Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We consider conditions which allow the embedding of linear hypergraphs of fixed size. In particular, we prove that any k-uniform hypergraph H of positive uniform density contains all linear k-uniform hypergraphs of a given size. More precisely, we show that for all integers l >= k >= 2 and every d > 0 there exists Q > 0 for which the following holds: if His a sufficiently large k-uniform hypergraph with the property that the density of H induced on every vertex subset of size on is at least d, then H contains every linear k-uniform hypergraph F with l vertices. The main ingredient in the proof of this result is a counting lemma for linear hypergraphs, which establishes that the straightforward extension of graph epsilon-regularity to hypergraphs suffices for counting linear hypergraphs. We also consider some related problems. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The class of symmetric linear regression models has the normal linear regression model as a special case and includes several models that assume that the errors follow a symmetric distribution with longer-than-normal tails. An important member of this class is the t linear regression model, which is commonly used as an alternative to the usual normal regression model when the data contain extreme or outlying observations. In this article, we develop second-order asymptotic theory for score tests in this class of models. We obtain Bartlett-corrected score statistics for testing hypotheses on the regression and the dispersion parameters. The corrected statistics have chi-squared distributions with errors of order O(n(-3/2)), n being the sample size. The corrections represent an improvement over the corresponding original Rao`s score statistics, which are chi-squared distributed up to errors of order O(n(-1)). Simulation results show that the corrected score tests perform much better than their uncorrected counterparts in samples of small or moderate size.
Resumo:
In this paper we extend partial linear models with normal errors to Student-t errors Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data the local influence curvatures are derived and some diagnostic graphics are proposed A motivating example preliminary analyzed under normal errors is reanalyzed under Student-t errors The local influence approach is used to compare the sensitivity of the model estimates (C) 2010 Elsevier B V All rights reserved
Resumo:
Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.
Resumo:
The Grubbs` measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We investigated noble gas copper bonds in linear complexes represented by the NgCuX general formula in which Ng and X stand for a noble gas (neon, argon, krypton, or xenon) and a halogen (fluorine, chlorine or bromine), respectively, by coupled cluster methods and modified cc-pVQZ basis sets. The quantum theory of atoms in molecules (QTAIM) shows a linear relation between the dissociation energy or noble gas-copper bonds and the amount of electronic charge transferred mainly from the noble gas to copper during complexation. Large changes in the QTAIM quadrupole moments of copper and noble gases resulting from this bonding and a comparison between NgCuX and NgNaCl systems indicate that these noble gas-copper bonds should be better interpreted as predominantly covalent. Finally, QTAIM atomic dipoles of noble gases in NgNaCl systems agree satisfactorily with atomic dipoles given by a simple model for these NgNa van der Waals bonds.
Resumo:
We present the hglm package for fitting hierarchical generalized linear models. It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the model.
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.
Resumo:
This paper presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction is explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. The paper outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson error-in-variable generalized linear model, it has been shown that in complicated cases LP produces better results than already know methods.
Resumo:
Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.
Resumo:
The aim of this project is to provide an explanation for recently obtained binding constants for two similar guest molecules, NDMG and N-MAP, with a p-sulfonatocalix[6]arene host in ammonium acetate buffer. This work was done primarily using pressure perturbation calorimetry, which is a technique that determines the coefficient of thermal expansion, α, which is in turn related to the solute molecule's effect on the order of the surrounding water molecules. A series of experiments were designed to test the effects of suspected confounding variables on the validity of PPC data. PPC was then used to study NDMG and N-MAP in ammonium acetate buffer. NDMG exhibited a minimum in α as function of temperature, while N-MAP did not. This difference was theorized to be due to the formation of an intramolecular hydrogen bond in monocationic NDMG that would lower the heat capacity of the molecule and better distribute the molecule's charge. Computational work and nuclear magnetic resonance spectroscopy confirmed that monocationic, ring-closed NDMG has less concentrated charge and more constrained motion than monocationic, ring-open NDMG. This evidence supports the theory that monocationic NDMG forms an intramolecular hydrogen bond and that this may be responsible for the minimum in α. This difference may explain the differences in binding constants between NDMG and N-MAP.