947 resultados para Limit State Functions
Resumo:
Mucosal adjuvants are important to overcome the state of immune tolerance normally associated with mucosal delivery and to enhance adaptive immunity to often-weakly immunogenic subunit vaccine antigens. Unfortunately, adverse side effects of many experimental adjuvants limit the number of adjuvants approved for vaccination. Lipid C is a novel, non-toxic, lipid oral vaccine-delivery formulation, developed originally for oral delivery of the live Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccine. In the present study, murine models of chlamydial respiratory and genital tract infections were used to determine whether transcutaneous immunization (TCI) with Lipid C-incorporated protein antigens could elicit protective immunity at the genital and respiratory mucosae. BALB/c mice were immunized transcutaneously with Lipid C containing the chlamydial major outer membrane protein (MOMP), with and without addition of cholera toxin and CpG-ODN 1826 (CT/CpG). Both vaccine combinations induced mixed cell-mediated and mucosal antibody immune responses. Immunization with Lipid C-incorporated MOMP (Lipid C/MOMP), either alone or with CT/CpG resulted in partial protection following live challenge with Chlamydia muridarum as evidenced by a significant reduction in recoverable Chlamydia from both the genital secretions and lung tissue. Protection induced by immunization with Lipid C/MOMP alone was not further enhanced by the addition of CT/CpG. These results highlight the potential of Lipid C as a novel mucosal adjuvant capable of targeting multiple mucosal surfaces following TCI. Protection at both the respiratory and genital mucosae was achieved without the requirement for potentially toxic adjuvants, suggesting that Lipid C may provide a safe effective mucosal adjuvant for human vaccination.
Resumo:
The application of the Bluetooth (BT) technology to transportation has been enabling researchers to make accurate travel time observations, in freeway and arterial roads. The Bluetooth traffic data are generally incomplete, for they only relate to those vehicles that are equipped with Bluetooth devices, and that are detected by the Bluetooth sensors of the road network. The fraction of detected vehicles versus the total number of transiting vehicles is often referred to as Bluetooth Penetration Rate (BTPR). The aim of this study is to precisely define the spatio-temporal relationship between the quantities that become available through the partial, noisy BT observations; and the hidden variables that describe the actual dynamics of vehicular traffic. To do so, we propose to incorporate a multi- class traffic model into a Sequential Montecarlo Estimation algorithm. Our framework has been applied for the empirical travel time investigations into the Brisbane Metropolitan region.
Resumo:
Education systems have a key role to play in preparing future citizens to engage in sustainable living practices and help create a more sustainable world. Many schools throughout Australia have begun to develop whole-school approaches to sustainability education that are supported by national and state policies and curriculum frameworks. Preservice teacher education, however, lags behind in building the capacity of new teachers to initiate and implement such approaches (ARIES, 2010). This proposed project seeks to develop a state-wide systems approach to embedding Education for Sustainability (EfS) in teacher education that is aligned with the Australian National Curriculum and the aspirations for EfS in the Melbourne Declaration and other national documents. Representatives from all teacher education institutions and other agents of change in the Queensland education system will be engaged in a multilevel systems approach, involving collaboration at the state, institutional and course levels, to develop curriculum practices that reflect a shared vision of EfS.
Resumo:
It is widely acknowledged that effective asset management requires an interdisciplinary approach, in which synergies should exist between traditional disciplines such as: accounting, engineering, finance, humanities, logistics, and information systems technologies. Asset management is also an important, yet complex business practice. Business process modelling is proposed as an approach to manage the complexity of asset management through the modelling of asset management processes. A sound foundation for the systematic application and analysis of business process modelling in asset management is, however, yet to be developed. Fundamentally, a business process consists of activities (termed functions), events/states, and control flow logic. As both events/states and control flow logic are somewhat dependent on the functions themselves, it is a logical step to first identify the functions within a process. This research addresses the current gap in knowledge by developing a method to identify functions common to various industry types (termed core functions). This lays the foundation to extract such functions, so as to identify both commonalities and variation points in asset management processes. This method describes the use of a manual text mining and a taxonomy approach. An example is presented.
Resumo:
As business processes, services and relationships, are now recognized as key organizational assets, the demand for the so-called boundaryspanning roles and process-aware professionals is continuing to grow. The world-wide demand for these roles will continue to increase, fueled by the unprecedented interest in Business Process Management (BPM) and the other emerging cross-functional disciplines. This, in turn, creates new opportunities, as well as some unforeseeable challenges for BPM education, both in university and industry. This paper reports on an analysis of the current BPM offerings of Australian universities. It presents a critical review of what is taught and how it is taught, and identifies a series of gaps and concerns. Explanations and recommendations are proposed and a call made for BPM educators worldwide, for urgent action.
Resumo:
This issue of Hot Topics aims to provide a range of information about prisons and prisoners in australia and nsW in particular. there are many issues to examine within our prison system – how imprisonment functions as a method of punishment, the statistics that demonstrate the backgrounds of disadvantage of most prisoners and highlight the over-representation of indigenous australians in the criminal justice system. there is some detail provided on the day-to-day regime for prisoners in nsW and a discussion of prisoners’ legal rights, including their right to full citizenship.
Resumo:
This book examines the interface between religion, charity law and human rights. It does so by treating the Church of England and its current circumstances as a timely case study providing an opportunity to examine the tensions that have now become such a characteristic feature of that interface. Firstly, it suggests that the Church is the primary source of canon law principles that have played a formative role in shaping civic morality throughout the common law jurisdictions: the history of their emergence and enforcement by the State in post-Reformation England is recorded and assessed. Secondly, it reveals that of such principles those of greatest weight were associated with matters of sexuality: in particular, for centuries, family law was formulated and applied with regard for the sanctity of the heterosexual marital family which provided the only legally permissible context for any form of sexual relationship. Thirdly, given that history, it identifies and assesses the particular implications that now arise for the Church as a consequence of recent charity law reform outcomes and human rights case law developments: a comparative analysis of religion related case law is provided. Finally, following an outline of the structure and organizational functions of the Church, a detailed analysis is undertaken of its success in engaging with these issues in the context of the Lambeth Conferences, the wider Anglican Communion and in the ill-fated Covenant initiative. From the perspective of the dilemmas currently challenging the moral authority of the Church of England, this book identifies and explores the contemporary ‘moral imperatives’ or red line issues that now threaten the coherence of Christian religions in most leading common law nations. Gay marriage and abortion are among the host of morally charged and deeply divisive topics demanding a reasoned response and leadership from religious bodies. Attention is given to the judicial interpretation and evaluation of these and other issues that now undermine the traditional role of the Church of England. As the interface between religion, charity law and human rights becomes steadily more fractious, with religious fundamentalism and discrimination acquiring a higher profile, there is now a pressing need for a more balanced relationship between those with and those without religious beliefs. This book will be an invaluable aid in starting the process of achieving a triangulated relationship between the principles of canon law, charity law and human rights law.
Resumo:
In this chapter, the role of State Estimation (SE) in smart power grids is presented. The trend of SE error with respect to the increasing of the smart grids implementation investigated. The observability analysis as a prior task of SE is demonstrated and an analytical method to consider the impedance values of the branches is developed and discussed by examples. Since most principles of smart power grids are appropriate to distribution networks, the Distribution SE (DSE)considering load correlation is argued and illustrated by an example. The main features of smart grid SE, which is here named as “Smart Distributed SE” (SDSE), are discussed. Some characteristics of proposed SDES are distributed, hybrid, multi-micro grid and islanding support, Harmonic State Estimation (HSE), observability analysis and restore, error processing, and network parameter estimation. Distribution HSE (DHSE) and meter placement for SDSE are also presented.
Resumo:
This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).
Resumo:
This paper presents a new algorithm based on honey-bee mating optimization (HBMO) to estimate harmonic state variables in distribution networks including distributed generators (DGs). The proposed algorithm performs estimation for both amplitude and phase of each harmonics by minimizing the error between the measured values from phasor measurement units (PMUs) and the values computed from the estimated parameters during the estimation process. Simulation results on two distribution test system are presented to demonstrate that the speed and accuracy of proposed distribution harmonic state estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as weight least square (WLS), genetic algorithm (GA) and tabu search (TS).
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.
Resumo:
This paper presents a novel algorithm based on particle swarm optimization (PSO) to estimate the states of electric distribution networks. In order to improve the performance, accuracy, convergence speed, and eliminate the stagnation effect of original PSO, a secondary PSO loop and mutation algorithm as well as stretching function is proposed. For accounting uncertainties of loads in distribution networks, pseudo-measurements is modeled as loads with the realistic errors. Simulation results on 6-bus radial and 34-bus IEEE test distribution networks show that the distribution state estimation based on proposed DLM-PSO presents lower estimation error and standard deviation in comparison with algorithms such as WLS, GA, HBMO, and original PSO.
An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane
Resumo:
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.
Resumo:
Cryptosystems based on the hardness of lattice problems have recently acquired much importance due to their average-case to worst-case equivalence, their conjectured resistance to quantum cryptanalysis, their ease of implementation and increasing practicality, and, lately, their promising potential as a platform for constructing advanced functionalities. In this work, we construct “Fuzzy” Identity Based Encryption from the hardness of the Learning With Errors (LWE) problem. We note that for our parameters, the underlying lattice problems (such as gapSVP or SIVP) are assumed to be hard to approximate within supexponential factors for adversaries running in subexponential time. We give CPA and CCA secure variants of our construction, for small and large universes of attributes. All our constructions are secure against selective-identity attacks in the standard model. Our construction is made possible by observing certain special properties that secret sharing schemes need to satisfy in order to be useful for Fuzzy IBE. We also discuss some obstacles towards realizing lattice-based attribute-based encryption (ABE).