999 resultados para Ligand fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine differences in overall tumor responses measured by volumetric assessment and bioluminescence imaging (BLI) following exposure to uniform and non-uniform radiation fields in an ectopic prostate tumor model.

Materials and methods: Bioluminescent human prostate tumor xenografts were established by subcutaneous implantation into male mice. Tumors were irradiated with uniform or non-uniform field configurations using conventional in vivo irradiation procedures performed using a 225 kVp generator with custom lead shielding. Tumor responses were measured using Vernier calipers and by BLI using an in vivo imaging system. Survival was defined as the time to quadroupling of pre-treatment tumor volume. 

Results: The correlation between BLI and tumor volume measurements was found to be different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumor growth delay of 60 days with median survival of 75 days, compared to partially irradiated tumors which showed an average growth delay of 24 days and median survival of 38 days. 

Conclusions: Correlation between BLI and tumor volume measurements is lower for partially irradiated tumors than those exposed to uniform dose distributions. The response of partially irradiated tumors suggests non-uniformity in response beyond physical dose distribution within the target volume. Dosimetric uncertainty associated with conventional in vivo irradiation procedures prohibits their ability to accurately determine tumor response to non-uniform radiation fields and stresses the need for image guided small animal radiation research platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ2∼1013-1014W.cm-2.μm2) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalised medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation towards ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration.

Methods and Results: In this study we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen-coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR-199b is involved in EC differentiation. A step-wise increase in expression of miR-199 was detected during EC differentiation. Notably, miR-199b targeted the Notch ligand JAG1, resulting in VEGF transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA-mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR-199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR-199b-mediated inhibition of iPS cell differentiation towards SMCs. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR-199b also regulated VEGF expression and angiogenesis.

Conclusions: This study indicates a novel role for miR-199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding.

Both irrigation techniques resulted in similar grain yields (similar to 3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinlder systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray and radio observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays. The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas9. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion. Here we investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium. We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the Fortran program SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. The dynamics can be determined classically via the Lorentz force and Landau–Lifshitz equations or, alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo routines. Multiple background fields can be included in the simulation and, where applicable, the propagation direction, field type (plane wave, focussed paraxial, constant crossed, or constant magnetic), and time envelope of each can be independently specified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) achieve high levels of conformity to the target volume through the sequential delivery of highly spatially and temporally modulated radiation fields, which have been shown to impact radiobiological response. This study aimed to characterize the time and cell type dependency of survival responses to modulated fields using single cell type (SCT) and mixed cell type (MCT) co-culture models of transformed fibroblast (AG0-1522b) cells, and prostate (DU-145) and lung (H460) cancer cells. In SCT cultures, in-field responses showed no significant time dependency while out-of-field responses occurred early, and plateaued 6 h after irradiation in both DU-145 and H460 cells. Under modulated beam configurations MCT co-cultures showed cell-specific, differential out-of-field responses depending on the irradiated in-field and responding out-of-field cell type. The observed differential out-of-field responses may be due to the genetic background of the cells, in particular p53 status, which has been shown to mediate radiation-induced bystander effects (RIBEs). These data provide further insight into the radiobiological parameters that influence out-of-field responses, which have potential implications for advanced radiotherapy modalities and may provide opportunities for biophysical optimization in radiotherapy treatment planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrimination of different species in various target scopes within a single sensing platform can provide many advantages such as simplicity, rapidness, and cost effectiveness. Here we design a three-input colorimetric logic gate based on the aggregation and anti-aggregation of gold nanoparticles (Au NPs) for the sensing of melamine, cysteine, and Hg2+. The concept takes advantages of the highly specific coordination and ligand replacement reactions between melamine, cysteine, Hg2+, and Au NPs. Different outputs are obtained with the combinational inputs in the logic gates, which can serve as a reference to discriminate different analytes within a single sensing platform. Furthermore, besides the intrinsic sensitivity and selectivity of Au NPs to melamine-like compounds, the “INH” gates of melamine/cysteine and melamine/Hg2+ in this logic system can be employed for sensitive and selective detections of cysteine and Hg2+, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventionally, radial turbines have almost exclusively used radially fibred blades. While issues of mechanical integrity are paramount, there may be opportunities for improving turbine efficiency through a 3D blade design without exceeding mechanical limits. Off-design performance and understanding of the secondary flow structures now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. Operating in this region means the rotor will experience high values of positive incidence at the inlet. A CFD analysis has been carried out on a scaled automotive turbine utilizing a swing vane stator system. To date no open literature exists on the flow structures present in a standard VGT system. Investigations were carried out on a 90 mm diameter rotor with the stator vane at the maximum, minimum and 25% mass flow rate positions. In addition stator vane endwall clearance existed at the hub side. From investigation of the internal flow fields of the baseline rotor, a number of areas that could be optimized in the future with three dimensional blading were identified. The blade loading and tip leakage flow near inlet play a significant role in the flow development further downstream at all stator vane positions. It was found that tip leakage flow and flow separation at off-design conditions could be reduced by employing back swept blading and redistributing the blade loading. This could potentially reduce the extent of the secondary flow structures found in the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators.

RESULTS: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators.

CONCLUSIONS: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically demonstrate the possibility to generate both trains and isolated attosecond pulses with high ellipticity in a practical experimental setup. The scheme uses circularly polarized, counterrotating two-color driving pulses carried at the fundamental and its second harmonic. Using a model Ne atom, we numerically show that highly elliptic attosecond pulses are generated already at the single-atom level. Isolated pulses are produced by using few-cycle drivers with controlled time delay between them.