999 resultados para Late nitrogen fertilization
Resumo:
The ABA-deficient wilty pea (Pisum sativum L.) and its wild-type (WT) were grown at two levels of nitrogen supply (0.5 and 5.0 mM) for 5-6 weeks from sowing, to determine whether leaf ABA status altered the leaf growth response to N deprivation. Plants were grown at high relative humidity to prevent wilting of the wilty peas. Irrespective of N supply, expanding wilty leaflets had ca 50% less ABA than WT leaflets but similar ethylene evolution rates. Fully expanded wilty leaflets had lower relative water contents (RWC) and were 10-60% smaller in area (according to the node of measurement) than WT leaflets. However, there were no genotypic differences in plant relative leaf expansion rate (RLER). Growth of both genotypes at 0.5 mM N increased the RWC of fully expanded leaflets, but did not alter ethylene evolution or ABA concentration of expanding leaflets. Plants grown at 0.5 mM N showed a 20-30% reduction in RLER, which was similar in magnitude in both wilty and WT peas. Thus, leaf ABA status did not alter the leaf growth response to N deprivation.
Resumo:
In order to meet increasingly stringent European discharge standards, new applications and control strategies for the sustainable removal of ammonia from wastewater have to beimplemented. In this paper we discuss anitrogen removal system based on the processesof partial nitrification and anoxic ammoniaoxidation (anammox). The anammox process offers great opportunities to remove ammonia in fully autotrophic systems with biomass retention. No organic carbon is needed in such nitrogenremoval system, since ammonia is used a selectron donor for nitrite reduction. The nitrite can be produced from ammonia in oxygen-limited biofilm systems or in continuous processes without biomass retention. For successful implementation of the combined processes, accurate biosensors for measuring ammonia and nitrite concentrations, insight inthe complex microbial communities involved, and new control strategies have to be developed and evaluated.
Resumo:
The objectives of this study were: (1) to quantify the genetic variation in foliar carbon isotope composition (delta(13)C) of 122 clones of ca. 4-year-old F-1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (Pinus caribaea var. hondurensis Barr.,et Golf.) grown at two field experimental sites with different water and nitrogen availability in southeast Queensland, Australia, in relation to tree growth and foliar nitrogen concentration (N-mass); and (2) to assess the potential of using delta(13)C measurements, in the foliage materials collected from the clone hedges at nursery and the 4-year-old tree canopies in the field, as an indirect index of tree water use efficiency for selecting elite F-1 hybrid pine clones with improved tree growth. There were significant differences in foliar delta(13)C between the nursery hedges and the 4-year-old tree canopies in the field, between the summer and winter seasons, between the two experimental sites, and between the upper outer and lower outer canopy positions sampled. This indicates that delta(13)C measurements in the foliage materials are significantly influenced by the sampling techniques and environmental conditions. Significant differences in foliar delta(13)C, at the upper outer canopy in both field experiments in summer and winter, were detected between the clones, and between the female parents of the clones. Clone means of tree height at age ca. 3 years were positively related to those of the upper outer canopy delta(13)C at both experimental sites in winter, but only for the wetter site in summer. There were positive, linear relationships between clone means of canopy delta(13)C and those of canopy N-mass, indicating that canopy photosynthetic capacity might be an important factor regulating the clonal variation in canopy delta(13)C. Significant correlations were found between clone means of canopy delta(13)C at both experimental sites in summer and winter, and between those at the upper outer and lower outer canopy positions. Mean clone delta(13)C for the nursery hedges was only positively related to mean clone stem diameter at 1.3 m height at age 3 years on the wetter site. The clone by site interaction for foliar delta(13)C at the upper outer canopy was significant only in summer. Overall, the relatively high genetic variance components for foliar delta(13)C and significant, positive correlations between clone means of foliar delta(13)C and tree growth have highlighted the potential of using foliar delta(13)C measurements for assisting in selection of the elite F-1 hybrid pine clones with improved tree growth. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Ethephon promotes fruit abscission and accelerates harvest of macadamia, Macadamia integrifolia (Proteaceae), but has limited use due to concerns that associated abscission of inner-canopy leaves may reduce subsequent yield and nut quality. Yield and quality were monitored for 2 years following ethephon application to both unshaken and mechanically shaken trees of the late-abscising cultivar, A16. Nut quality was not adversely affected in subsequent seasons, but effects on yield varied. In 3 of 6 experiments, ethephon reduced yield in the year after application. However, in 4 of the 6 experiments, 2 years of ethephon application greatly elevated yield in the third year. This was not a compensating recovery from low second-year yield, as third-year yield of trees that received only 1 ethephon treatment did not differ from yield of control trees. Ethephon-assisted harvest remains feasible for macadamia, although further work is warranted given the potential risks and considerable benefits for subsequent yield. Inner canopy defoliation, resulting from ethephon use, could represent a canopy management technique for dense-canopy fruit trees.
Resumo:
A grazing trial was conducted to quantify N cycling in degraded Leucaena leucocephala (leucaena)-Brachiaria decumbens (signal grass) pastures grown on an acid, infertile, podzolic soil in south-east Queensland. Nitrogen accumulation and cycling in leucaena-signal grass pastures were evaluated for 9 weeks until all of the leucaena on offer (mean 600 kg edible dry matter (EDM)/ha, 28% of total pasture EDM) was consumed. Nitrogen pools in the grass, leucaena, soil, cattle liveweight, faeces and urine were estimated. The podzolic soil (pH 4.8-5.9) was found to be deficient in P, Ca and K. Leucaena leaf tissues contained deficient levels of N, P and Ca. Grass tissues were deficient in N and P. Grazing was found to cycle 65% of N on offer in pasture herbage. However, due to the effect of the plant nutrient imbalances described above, biological N fixation by leucaena contributed only 15 kg/ha N to the pasture system over the 9-month regrowth period, of which 13 kg/ha N was cycled. Cattle retained 1.8 kg/ha N (8% of total N consumed) in body tissue and the remainder was excreted in dung and urine in approximately equal proportions. Mineral soil N concentrations did not change significantly (-3.5 kg/ha N) over the trial period. The ramifications of grazing and fertiliser management strategies, and implications for pasture rundown and sustainability are discussed.
Resumo:
High concentrations of NH4+ (up to 270 kg N/ha) have been observed in a Vertosol below 1 m depth in south-east Queensland. This study examined the possibility that mineralisation associated with the removal of native vegetation (Acacia harpophylla) for cropping was responsible for the production of NH4+. Particularly, the potential contribution of decomposing root material and/or dissolved organic nitrogen (DON) leached into the subsoil after clearing was investigated. The amount of N that was contained within native vegetation root material was determined from an area of native vegetation adjacent to the cleared site containing elevated NH4+ concentrations. In addition, the amount of NH4+ that could be mineralised in the native vegetation soil was determined by monitoring NH4+ concentrations over 360 days in intact cores, and by conducting waterlogged incubations. To determine the rate at which a source of DON leached into the subsoil would mineralise, soil was amended with glutamic acid at a rate of 250 mg N/kg and placed under waterlogged incubation. The possibility that the acidic pH of the subsoil, or the lack of a significant subsoil microbial population, was inhibiting mineralisation was also examined by increasing soil pH from 4.4 to 7.0, and inoculating the subsoil with surface soil microorganisms during waterlogged incubations. Low concentrations of N, approximately 90 kg N/ha between 1.2 and 3 m, were found in the native vegetation root material. In addition, no net N mineralisation was observed in either the extended incubation of intact cores or in the control samples of the waterlogged incubations. Net N mineralisation was also not detected when the subsoil was amended with a source of organic N. Results indicate that this lack of mineralisation is largely due to pH inhibition of the microbial population. It is concluded that the mineralisation of either in situ organic material, or DON transported to the subsoil during leaching events, is unlikely to have significantly contributed to the subsoil NH4 accumulation at the study site.
Resumo:
A Baía de Vitória é um estuário com 20 km de comprimento, morfologicamente estreito, com um regime de micromaré e, como outros estuários modernos, formado durante a última transgressão pós-glacial. A morfologia de fundo do estrato estuarino é caracterizada por um canal natural principal limitado por planícies de maré com manguezais desenvolvidos. Datações de radiocarbono originais foram obtidas para a área. Cinco idades de radiocarbono estendendo-se de 1.010 a 7.240 anos AP foram obtidas através de dois testemunhos de sedimento, representando uma sequência estratigráfica de 5 m de espessura. Os resultados indicam que até aproximadamente 4.000 anos cal. AP, as condições ambientais da Baía de Vitória eram ainda de uma baía aberta, com uma conexão livre e aberta com águas marinhas. Durante os últimos 4.000 anos a baía experimentou uma fase de regressão importante, tornando-se mais restrita em termos de circulação da água do mar e provavelmente aumentando a energia de marés. Três superfícies estratigráficas principais foram reconhecidas, limitando fácies transgressiva, transgressiva/nível de mar alto e regressiva. A morfologia do canal atual representa um diastema de maré, mostrando fácies regressivas truncadas e erodidas. Biofácies de foraminíferos, passando de ambiente marinho para ambiente salobro e de manguezais em planície de maré confirmam a interpretação sismoestratigráfica. A ausência de biofácies de mangue em um dos dois testemunhos é tambémuma indicação de ravinamento de maré atual.
Resumo:
Myocardial infarction leads to compensatory ventricular remodeling. Disturbances in myocardial contractility depend on the active transport of Ca2+ and Na+, which are regulated by Na+-K+ ATPase. Inappropriate regulation of Na+-K+ ATPase activity leads to excessive loss of K+ and gain of Na+ by the cell. We determined the participation of Na+-K+ ATPase in ventricular performance early and late after myocardial infarction. Wistar rats (8-10 per group) underwent left coronary artery ligation (infarcted, Inf) or sham-operation (Sham). Ventricular performance was measured at 3 and 30 days after surgery using the Langendorff technique. Left ventricular systolic pressure was obtained under different ventricular diastolic pressures and increased extracellular Ca2+ concentrations (Ca2+e) and after low and high ouabain concentrations. The baseline coronary perfusion pressure increased 3 days after myocardial infarction and normalized by 30 days (Sham 3 = 88 ± 6; Inf 3 = 130 ± 9; Inf 30 = 92 ± 7 mmHg; P < 0.05). The inotropic response to Ca2+e and ouabain was reduced at 3 and 30 days after myocardial infarction (Ca2+ = 1.25 mM; Sham 3 = 70 ± 3; Inf 3 = 45 ± 2; Inf 30 = 29 ± 3 mmHg; P < 0.05), while the Frank-Starling mechanism was preserved. At 3 and 30 days after myocardial infarction, ventricular Na+-K+ ATPase activity and contractility were reduced. This Na+-K+ ATPase hypoactivity may modify the Na+, K+ and Ca2+ transport across the sarcolemma resulting in ventricular dysfunction.
Resumo:
Slow-release and organic fertilizers are promising alternatives to conventional fertilizers, as both reduce losses by leaching, volatilization and problems of toxicity and/or salinity to plants. The objective of this work was to evaluate the effect of different rates of the organic fertilizer Humato-Macota® compared with the slow-release fertilizer Osmocote® on the growth and nitrogen content in the dry matter of Rangpur lime. A field experiment was conducted in a factorial completely randomized design with an additional treatment (4 x 4 +1). The first factor consisted of four HumatoMacota® rates (0, 1, 2, and 3%) applied to the substrate; the second factor consisted of the same Humato-Macota® concentrations, but applied as fortnightly foliar sprays; the additional treatment consisted of application of 5 kgm-3 Osmocote® 18-05-09. Means of all growth characteristics (plant height, total dry matter, root/shoot ratio and leaf area) and the potential quantum yield of photosystem II (Fv/Fm) were higher when plants were fertilized with the slow-release fertilizer. The organic fertilizer applied alone did not meet the N requirement of Rangpur lime.
Resumo:
Digital thermal imaging has been employed in medicine for over 50 years. However, its use has been focused on vascular, musculoskeletal and neurological conditions, while other potential applications,such as obstetrics, have been much less explored. This paper presents a study conducted during 2011 at the Hospital of Braga on a group of healthy pregnant women in the last third of gestation. The analysis focused on characterizing typical pregnant women steady temperature profiles in specific defined regions of interest (ROI), and determining if the thermal symmetry values for late pregnant healthy women are in line with the values for non-pregnant healthy women. A temperature distribution pattern was found in the defined ROI. The obtained thermal symmetry value had a maximum of 0.370.2 1C, and there was no evidence for the influence of age (p40.05) in the observed group. The influence of the BMI requires further investigation since one ROI (P2 right) presented a p¼0.059, close to the threshold of statistical evidence in the influence of BMI. The study group presented symmetry values in line with non-pregnant reference values, but the profiles in temperature distribution are different. Assumptions can therefore now be used with higher confidence when assessing abnormalities in specific pathologic states during pregnancy using the defined ROI. This work represents a first contribution towards establishing guidelines for future research in this specific field of study.