996 resultados para Laryngeal Edema
Resumo:
AIMS/HYPOTHESIS: Disruption of the retinal pigment epithelial (RPE) barrier contributes to sub-retinal fluid and retinal oedema as observed in diabetic retinopathy. High placental growth factor (PLGF) vitreous levels have been found in diabetic patients. This work aimed to elucidate the influence of PLGF-1 on a human RPE cell line (ARPE-19) barrier in vitro and on normal rat eyes in vivo. METHODS: ARPE-19 permeability was measured using transepithelial resistance and inulin flux under stimulation of PLGF-1, vascular endothelial growth factor (VEGF)-E and VEGF 165. Using RT-PCR, we evaluated the effect of hypoxic conditions or insulin on transepithelial resistance and on PLGF-1 and VEGF receptors. The involvement of mitogen-activated protein kinase (MEK, also known as MAPK)/extracellular signal-regulated kinase (ERK, also known as EPHB2) signalling pathways under PLGF-1 stimulation was evaluated by western blot analysis and specific inhibitors. The effect of PLGF-1 on the external haemato-retinal barrier was evaluated after intravitreous injection of PLGF-1 in the rat eye; evaluation was by semi-thin analysis and zonula occludens-1 immunolocalisation on flat-mounted RPE. RESULTS: In vitro, PLGF-1 induced a reversible decrease of transepithelial resistance and enhanced tritiated inulin flux. These effects were specifically abolished by an antisense oligonucleotide directed at VEGF receptor 1. Exposure of ARPE-19 cells to hypoxic conditions or to insulin induced an upregulation of PLGF-1 expression along with increased transcellular permeability. The PLGF-1-induced RPE cell permeability involved the MEK signalling pathway. Injection of PLGF-1 in the rat eye vitreous induced an opening of the RPE tight junctions with subsequent sub-retinal fluid accumulation, retinal oedema and cytoplasm translocation of junction proteins. CONCLUSIONS/INTERPRETATION: Our results indicate that PLGF-1 may be a potential regulation target for the control of diabetic retinal and macular oedema.
High-altitude medicine: important for trekkers and mountaineers, essential for progress in medicine.
Resumo:
Anorexia nervosa (AN) is a severe and potentially lethal disease of the young woman. It is defined as an anxious disorder not to gain weight, and an obsessive behavior regarding body weight and physical appearance. Different and variable patterns of behaviour are observed. This article focuses on the renal problems observed in anorexic patients. Anorexia is often associated with severe electrolyte disturbances, such as hypokalemia and hypophosphatemia, and alterations of water metabolism with hyponatremia and edema. Hypokalemia and chronic dehydration may contribute to the development of renal failure. Even end stage renal disease can be observed in these patients. A better understanding of the pathophysiology might improve treatment of patients suffering from AN.
Resumo:
Background The association between dietary patterns and head and neck cancer has rarely been addressed. Patients and methods We used individual-level pooled data from five case-control studies (2452 cases and 5013 controls) participating in the International Head and Neck Cancer Epidemiology consortium. A posteriori dietary patterns were identified through a principal component factor analysis carried out on 24 nutrients derived from study-specific food-frequency questionnaires. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using unconditional logistic regression models on quintiles of factor scores. Results We identified three major dietary patterns named 'animal products and cereals', 'antioxidant vitamins and fiber', and 'fats'. The 'antioxidant vitamins and fiber' pattern was inversely related to oral and pharyngeal cancer (OR = 0.57, 95% CI 0.43-0.76 for the highest versus the lowest score quintile). The 'animal products and cereals' pattern was positively associated with laryngeal cancer (OR = 1.54, 95% CI 1.12-2.11), whereas the 'fats' pattern was inversely associated with oral and pharyngeal cancer (OR = 0.78, 95% CI 0.63-0.97) and positively associated with laryngeal cancer (OR = 1.69, 95% CI 1.22-2.34). Conclusions These findings suggest that diets rich in animal products, cereals, and fats are positively related to laryngeal cancer, and those rich in fruit and vegetables inversely related to oral and pharyngeal cancer.
Resumo:
Pharmacological treatment of hypertension is effective in preventing cardiovascular and renal complications. Calcium antagonists and blockers of the renin-angiotensin system are widely used today to initiate antihypertensive therapy but, when given as monotherapy, do not suffice in most patients to normalize blood pressure. Combining the two types of agents considerably increases the antihypertensive efficacy, but not at the expense of a deterioration of tolerability. This is exemplified by the experience accumulated with the recently developed fixed dose combination containing the AT(1)-receptor blocker valsartan (160 mg) and the dihydropyridine amlodipine (5 or 10 mg). In a randomized trial, an 8-week treatment normalized blood pressure (<140/90 mmHg) within 8 weeks in a large fraction of hypertensive patients (78.4% and 85.2% using the 5/160 [n = 371] and 10/160 mg [n = 377] dosage, respectively). Like all AT(1)-receptor blockers valsartan has a placebo-like tolerability. Valsartan prevents to a large extent the occurrence amlodipine-induced peripheral edema. Both amlodipine and valsartan have beneficial effects on cardiovascular morbidity and mortality, as well as protective effects on renal function. The co-administration of these two agents is therefore very attractive, as it enables a rapid and sustained blood pressure control in hypertensive patients. The availability of a fixed-dose combination based on amlodipine and valsartan is expected therefore to facilitate the management of hypertension, to improve long-term adherence with antihypertensive therapy and, ultimately, to have a positive impact on cardiovascular and renal outcomes.
Resumo:
The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.
Resumo:
RESUME : Les aquaporines (AQPs) sont des protéines membranaires perméables à l'eau (aquaporines strictes) et, pour certaines d'entre elles, également au glycérol (aquaglycéroporines). Ces protéines sont présentes dans les bactéries, les plantes et les différents organes des mammifères. Dans le cerveau, la moindre augmentation de volume hydrique peut avoir de graves conséquences sur son fonctionnement, d'où l'importance de la régulation de l'homéostasie de l'eau grâce aux AQPs. L'AQP4, une aquaporine stricte, est présente dans les astrocytes et est impliquée dans la formation et la résorption des oedèmes cérébraux. En revanche, l'AQP9 est une aquaglycéroporine, qui est localisée non seulement dans les astrocytes mais également dans les neurones catécholaminergiques. Bien que la distribution de l'AQP4 dans le cerveau soit clairement établie, la présence de l'AQP9 est toujours une donnée controversée et son rôle fonctionnel dans le système nerveux central n'est pas connu. Par ailleurs, aucune donnée n'existe sur l'expression des AQP4 et 9 lors de la différenciation de cellules souches neurales foetales (CSNf) en astrocytes ou en neurones catécholaminergiques. Dans la première partie de ce travail, un protocole a été mis au point permettant de différencier des CSNf de souris en astrocytes et neurones, dont des neurones catécholaminergiques. La caractérisation des cultures de CSNf et des cultures mixtes par immunofluorescence a permis de montrer que l'immunomarquage AQP9 est présent dans les CSNf et est conservé lors de leur différenciation en astrocytes ou en neurones catécholaminergiques. Les résultats obtenus ont mis en évidence une très bonne corrélation entre l'expression de la TH (tyrosine hydroxylase: enzyme limitante de la synthèse des catécholamines) et celle de l'AQP9 lors de la différenciation des CSNf en neurones catécholaminergiques. Par contre, l'immunomarquage AQP4 n'est pas présent dans les CSNf alors qu'il est observé dans les astrocytes. De plus, aucun immunomarquage AQP4 ou AQP9 n'a été observé dans les neurones NIAP2-positifs. Dans la deuxième partie de ce travail, l'expression des AQP4 et 9 a été quantifiée dans les CSNf ainsi que dans trois populations d'astrocytes présentant des propriétés métaboliques différentes. Ces trois populations astrocytaires sont issues de la différenciation des CSNf par le CNTF, le LIF ou le sérum de veau foetal. Les analyses par RTPCR quantitative et western blot ont montré une augmentation de l'expression de l'AQP9 et de l'AQP4 corrélée à l'acquisition de propriétés métaboliques spécifiques des astrocytes matures. Dans la dernière partie, la technique d'ARN interférents a permis d'étudier le rôle fonctionnel de l'AQP9 dans le modèle de culture pure d'astrocytes différenciés par le sérum. L'inhibition de l'expression d'AQP9 entraîne une diminution de la perméabilité au glycérol et une augmentation de l'utilisation de glucose, corrélée à une stimulation du métabolisme oxydatif astrocytaire. En revanche, 1a baisse d'expression d'AQP9 n'a aucun effet sur la glycolyse anaérobie ni sur la libération du lactate. En conclusion, dans ce modèle in vitro, seule l'AQP9 est exprimée dans les CSNf et les neurones catécholaminergiques alors que dans Ies astrocytes, à la fois l'AQP9 et l'AQP4 sont exprimées. Cette distribution est identique à celle observée in vivo et confirme la localisation spécifique de l'AQP9 dans les neurones catécholaminergiques. De plus, ces résultats montrent, pour la première fois, l'implication de l'AQP9 dans la perméabilité des astrocytes au glycérol et son implication dans le métabolisme énergétique astrocytaire. ABSTACT : Aquaporins (AQPs) are membrane proteins permeable to water (orthodoxes aquaporins) and some of them are also permeable to glycerol (aquaglyceroporins). These proteins are widely expressed in bacteria, plants and mammals. AQP water homeostasis regulation in brain is of primary importance as the brain volume cannot increase. AQP4, an orthodoxe aquaporin, is present in astrocytes and seems to be involved in edema formation and resorption. On the other hand, AQP9 is an aquaglyceroporin which is localised not only in astrocytes but also in catecholaminergic neurons. Although AQP4 distribution in brain is clearly established, the presence of AQP9 is still a discussed data and its functional role in the central nervous system is unknown. In addition, no data exists on AQP4 or AQP9 expression during fetal neural stem cells (fNSC) differentiation into astrocytes or catecholaminergic neurons. In the first part of this work, a protocol was developed to differentiate mouse fNSC into astrocytes and neurons, with the aim to obtain catecholaminergic neurons. By immunefluorescence, we have shown that AQP9 is expressed in fNSC cultures and also in astrocytes and catecholaminergic neurons in mixt cultures. The results obtained highlighted a very good correlation between TH expression (tyrosin hydroxylase being a limiting enzyme of catecholamines synthesis) and AQP9 in fNSC and all along their differentiation into catecholaminergic neurons. On the other hand, AQP4 immunolabelling is not observed in fNSC whereas it is in astrocytes. Moreover, neitheir AQP4, nor AQP9 immunoreactivity was observed in MAP2-positive neurons. In the second part of this work, AQP4 and AQP9 expression was quantified in fNSC and in three populations of astrocytes presenting different metabolic properties. These three astrocyte populations result from fNSC differentiation by addition of CNTF, LIF or fetal calf serum. Quantitative RT-PCR and western blot analyses have shown an increase in both AQP4 and AQP9 expression, correlated with the acquisition of specific metabolic properties of mature astrocytes. In the last part, siRNA were used to study the functional role of AQP9 in the pure astrocyte culture model differentiated by addition of fetal calf serum. Inhibition of AQP9 expression leads to a decrease of glycerol uptake and to an increase of glucose uptake, correlated with a stimulation of the astrocyte oxydative metabolism. On the other hand, inhibition of AQP9 expression does not have any effect on anaerobic glycolysis nor on lactate release. In conclusion, in this in vitro model, only AQP9 is expressed in fNSC and in catecholaminergic neurons whereas in astrocytes, both AQP9 and AQP4 are expressed. This distribution is identical to that observed in vivo and confirms the specific AQP9 localization in catecholaminergic neurons. IVloreover, these results show, for the first time, that AQP9 is implicated in glycerol uptake and in astrocyte energetic metabolism. Résumé large public : Les aquaporines, des protéines localisées dans les membranes cellulaires sont, comme leur nom l'indique, des canaux à eau. Pendant longtemps, il a été considéré que l'eau diffusait librement dans et à travers les cellules; la caractérisation des AQPs a révolutionné la vision des scientifiques concernant les mouvements d'eau entre les différents compartiments infra et extracellulaires, et a d'ailleurs valu le Prix Nobel à Peter Agre en 1992. Certaines AQPs, dites "strictes", laissent passer uniquement l'eau et participent au contrôle du volume hydrique. Ce contrôle est particulièrement important pour le bon fonctionnement du cerveau en raison de la présence de la boîte crânienne qui limite les variations de volume. D'autres AQPs, les aquaglycéroporines, sont perméables non seulement à l'eau mais également à d'autres molécules comme le glycérol. Elles facilitent, par exemple, la sortie du glycérol des cellules graisseuses et sa capture par les cellules du foie afin de produire du glucose en période de jeûne. Le cerveau est principalement composé de deux types de cellules: les neurones et les cellules gliales, majoritairement des astrocytes. L'AQP4, une AQP stricte, est présente dans les astrocytes et joue un rôle dans la formation et la résorption des oedèmes cérébraux. L'AQP9, une aquaglycéroporine, est également présente dans les astrocytes et dans une population spécifique de neurones, les neurones catécholaminergiques, touchés dans la maladie de Parkinson. A ce jour, la présence de l'AQP9 dans le cerveau est une donnée controversée et son rôle fonctionnel est inconnu. Ce travail de thèse a permis de montrer que l'AQP9 est bien présente d'une part dans les cellules souches neurales foetales et d'autre ,part dans les astrocytes et neurones catécholaminergiques issus de leur différenciation. De plus, ces expériences ont mis en évidence un rôle de l'AQP9 dans l'entrée du glycérol dans les astrocytes, ce qui pourrait être bénéfique dans des conditions d'ischémie. Enfin, les .résultats de cette étude suggèrent également un rôle de l'AQP9 dans le métabolisme énergétique des astrocytes. L'ensemble de ces travaux démontre le rôle important de l'AQP9 dans le cerveau et ouvre de nouvelles perspectives quant aux rôles des AQPs dans des situations pathologiques telles que l'ischémie cérébrale ou encore la maladie de Parkinson.
Resumo:
Background We analyzed the relationship between cholelithiasis and cancer risk in a network of case-control studies conducted in Italy and Switzerland in 1982-2009. Methods The analyses included 1997 oropharyngeal, 917 esophageal, 999 gastric, 23 small intestinal, 3726 colorectal, 684 liver, 688 pancreatic, 1240 laryngeal, 6447 breast, 1458 endometrial, 2002 ovarian, 1582 prostate, 1125 renal cell, 741 bladder cancers, and 21 284 controls. The odds ratios (ORs) were estimated by multiple logistic regression models. Results The ORs for subjects with history of cholelithiasis compared with those without were significantly elevated for small intestinal (OR = 3.96), prostate (OR = 1.36), and kidney cancers (OR = 1.57). These positive associations were observed ≥10 years after diagnosis of cholelithiasis and were consistent across strata of age, sex, and body mass index. No relation was found with the other selected cancers. A meta-analysis including this and three other studies on the relation of cholelithiasis with small intestinal cancer gave a pooled relative risk of 2.35 [95% confidence interval (CI) 1.82-3.03]. Conclusion In subjects with cholelithiasis, we showed an appreciably increased risk of small intestinal cancer and suggested a moderate increased risk of prostate and kidney cancers. We found no material association with the other cancers considered.
Resumo:
rejection can lead to loss of function. Histological reading of endomyocardial biopsy remains the "gold standard" for guiding immunosuppression, despite its methodological limitations (sampling error and interobserver variability). The measurement of the T2 relaxation time has been suggested for detection of allograft rejection, on the pathophysiological basis that the T2 relaxation time prolongs with local edema resulting from acute allograft rejection. Using breath-held cardiac magnetic resonance T2 mapping at 1.5 T, Usman et al. (CircCardiovascImaging2012) detected moderate allograft rejection (grade 2R, ISHLT 2004). With modern immunosuppression grade 2R rejection has become a rare event, but the need remains for a technique that permits the discrimination of absent (grade 0R) and mild rejection (grade 1R). We therefore investigated whether an increase of magnetic field strength to 3T and the use of real-time navigator-gated respiration compensation allow for an increase in the sensitivity of T2 relaxation time detection that is necessary to achieve this discrimination. Methods: Eighteen patients received EMB (Tan et al., ArchPatholLabMed2007) and cardiac T2 mapping on the same day. Reading of T2 maps was blinded to the histological results. For final analysis, 3 cases with known 2R rejection at the time of T2 mapping were added, yielding 21 T2 mapping sessions. A respiration-navigator-gated radial gradient-recalled-echo pulse sequence (resolution 1.17 mm2, matrix 2562, trigger time 3 heartbeats, T2 preparation duration TET2 Prep = 60/30/0 ms) was applied to obtain 3 short-axis T2 maps (van Heeswijk et al., JACCCardiovascImaging2012), which were segmented according to AHA guidelines (Cerqueira et al, Circulation2001). The highest segmental T2 values were grouped according to histological rejection grade and differences were analyzed by Student's t-test, except for the non-blinded cases with 2R rejection. The degree of discrimination was determined using the Spearman's ranked correlation test. Results: The high-quality T2 maps allowed for visual differentiation of the rejection degrees (Figure 1), and the correlation of T2 mapping with the histological grade of acute cellular rejection was significant (Spearman's r = 0.56, p = 0.007). The 0R (n = 15) and 1R (n = 3) degrees demonstrated significantly different T2 values (46.9 ± 5.0 and 54.3 ± 3.0 ms, p = 0.02, Figure 2). Cases with 2R rejection showed clear T2 elevation (T2 = 60.3 ± 16.2 ms). Conclusions: This pilot study demonstrates that non-invasive free-breathing cardiac T2 mapping at 3T discriminates between no and mild cardiac allograft rejection. Confirmation of these encouraging results in a larger cohort should consider a study able to show equivalency or superiority of T2 mapping.
Resumo:
Angio-oedema (AE) is a known adverse effect of angiotensin converting enzyme inhibitor (ACE-I) therapy. Over the past several decades, evidence of failure to diagnose this important and potentially fatal reaction is commonly found in the literature. Because this reaction is often seen first in the primary care setting, a review was undertaken to analyse and document the keys to both diagnostic criteria as well as to investigate potential risk factors for ACE-I AE occurrence. A general review of published literature was conducted through Medline, EMBASE, and the Cochrane Database, targeting ACE-I-related AE pathomechanism, diagnosis, epidemiology, risk factors, and clinical decision making and treatment. The incidence and severity of AE appears to be on the rise and there is evidence of considerable delay in diagnosis contributing to significant morbidity and mortality for patients. The mechanism of AE due to ACE-I drugs is not fully understood, but some genomic and metabolomic information has been correlated. Additional epidemiologic data and clinical treatment outcome predictors have been evaluated, creating a basis for future work on the development of clinical prediction tools to aid in risk identification and diagnostic differentiation. Accurate recognition of AE by the primary care provider is essential to limit the rising morbidity associated with ACE-I treatment-related AE. Research findings on the phenotypic indicators relevant to this group of patients as well as basic research into the pathomechanism of AE are available, and should be used in the construction of better risk analysis and clinical diagnostic tools for ACE-I AE.
Resumo:
Management of neurocritical care patients is focused on the prevention and treatment of secondary brain injury, i.e. the number of pathophysiological intracerebral (edema, ischemia, energy dysfunction, seizures) and systemic (hyperthermia, disorders of glucose homeostasis) events that occur following the initial insult (stroke, hemorrhage, head trauma, brain anoxia) that may aggravate patient outcome. The current therapeutic paradigm is based on multimodal neuromonitoring, including invasive (intracranial pressure, brain oxygen, cerebral microdialysis) and non-invasive (transcranial doppler, near-infrared spectroscopy, EEG) tools that allows targeted individualized management of acute coma in the early phase. The aim of this review is to describe the utility of multimodal neuromonitoring for the critical care management of acute coma.
Resumo:
Percutaneous cricothyroidotomy may be a lifesaving procedure for airway obstruction, which cannot be relieved by endotracheal intubation and can be performed with specially designed instruments. A new device, the "Quicktrach", was evaluated by an anatomical preparation, flow and resistance measurements, and puncture of the cricothyroid membrane in 55 corpses. The size of the parts of the instrument (needle, plastic cannula, depth gauge) in relation to the size of the larynx is adequate, thus there is little likelihood of perforation of the posterior wall of the larynx. Resistance of the plastic cannula is sufficiently low to allow for adequate ventilation. The duration of time until the cannula is positioned properly in the trachea is significantly shorter, when an incision prior to the puncture is done (83 +/- 88 seconds without incision versus 35 +/- 41 seconds with incision; mean +/- SD). The "Quicktrach" is easy to apply even by inexperienced persons. The incidence of damage to the larynx (lesions including fractures of the thyroid, cricoid and 1. tracheal cartilage in 18%; soft tissue injury in 9%) is relatively high, however considering the live saving character of the procedure these numbers appear to be acceptable. Technical problems which occur with the use of the device are discussed and suggestions for improvement are made.
Resumo:
PURPOSE: Drug delivery to treat diseases of the posterior segment of the eye, such as choroidal neovascularization and its complications, is hampered by poor intraocular penetration and rapid elimination of the drug from the eye. The purpose of this study was to investigate the feasibility and tolerance of suprachoroidal injections of poly(ortho ester) (POE), a bioerodible and biocompatible polymer, as a biomaterial potentially useful for development of sustained drug delivery systems. METHODS: After tunnelization of the sclera, different formulations based on POE were injected (100 microL) into the suprachoroidal space of pigmented rabbits and compared with 1% sodium hyaluronate. Follow-up consisted of fundus observations, echography, fluorescein angiography, and histologic analysis over 3 weeks. RESULTS: After injection, POE spread in the suprachoroidal space at the posterior pole. It was well tolerated and progressively disappeared from the site of injection without sequelae. No bleeding or retinal detachment occurred. Echographic pictures showed that the material was present in the suprachoroidal space for 3 weeks. Angiography revealed minor pigment irregularities at the site of injection, but no retinal edema or necrosis. Histology showed that POE was well tolerated in the choroid. CONCLUSIONS: POE suprachoroidal injections, an easy, controllable, and reproducible procedure, were well tolerated in the rabbit eye. POE appears to be a promising biomaterial to deliver drugs focally to the choroid and the retina.
Resumo:
OBJECTIVE: To review the presentation and evaluation of laryngotracheoesophageal clefts as well as their treatment modalities, especially endoscopic closure. STUDY DESIGN: retrospective case series. METHODS: All patients treated for laryngotracheoesophageal clefts in our clinic during the last 15 years were included. Analysis of preoperative data, surgical success and functional outcome was performed. RESULTS: A total of 18 patients were included in our study. Cleft distribution was: type I (n=1), type II (n=3), type IIIa (n=5), type IIIb (n=8) and type IVa (n=1). All clefts were closed endoscopically by CO2 laser repair except for two patients who benfited from open surgery (one type I, one type IIIb). 7 of our 18 patients (39%) experienced a complication necessitating reoperation. Surgical treatment of LTEC allowed cessation of feeding tube assistance and artificial ventilation in 47% and 42% of patients respectively. CONCLUSION: Surgical treatement of laryngotracheoesophageal clefts remains a complex procedure with a high rate of morbidity for high grade clefts. Post-surgical difficulties in feeding and breathing are associated with concomitant congenital anomalies. Endoscopic repair is a successful technique for treating up to grade IIIa laryngeal clefts. Further investigation is needed to assess the best approach for treating longer clefts.
Resumo:
PURPOSE: To implement and characterize an isotropic three-dimensional cardiac T2 mapping technique. METHODS: A self-navigated three-dimensional radial segmented balanced steady-state free precession pulse sequence with an isotropic 1.7-mm spatial resolution was implemented at 3T with a variable T2 preparation module. Bloch equation and Monte Carlo simulations were performed to determine the influence of the heart rate, B1 inhomogeneity and noise on the T2 fitting accuracy. In a phantom study, the accuracy of the pulse sequence was studied through comparison with a gold-standard spin-echo T2 mapping method. The robustness and homogeneity of the technique were ascertained in a study of 10 healthy adult human volunteers, while first results obtained in patients are reported. RESULTS: The numerical simulations demonstrated that the heart rate and B1 inhomogeneity cause only minor deviations in the T2 fitting, whereas the phantom study showed good agreement of the technique with the gold standard. The volunteer study demonstrated an average myocardial T2 of 40.5 ± 3.3 ms and a <15% T2 gradient in the base-apex and anterior-inferior direction. In three patients, elevated T2 values were measured in regions with expected edema. CONCLUSION: This respiratory self-navigated isotropic three-dimensional technique allows for accurate and robust in vitro and in vivo T2 quantification. Magn Reson Med 73:1549-1554, 2015. © 2014 Wiley Periodicals, Inc.