905 resultados para Langmuir-Blodgett and Langmuir-Schaefer Films


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Olsen method is an indicator of plant-available phosphorus (P). The effect of time and temperature on residual phosphate in soils was measured using the Olsen method in a pot experiment. Four soils were investigated: two from Pakistan and one each from England (calcareous) and Colombia (acidic). Two levels of residual phosphate were developed in each soil after addition of phosphate by incubation at either 10degreesC or 45degreesC. The amount of phosphate added was based on the P maximum of each soil, calculated using the Langmuir equation. Rvegrass was used as the test crop. The pooled data for the four soils incubated at 10degreesC showed good correlation between Olsen P and dry matter yield or P uptake (r(2) = 0.85 and 0.77, respectively), whereas at 45 degreesC, each soil had its own relationship and pooled data did not show correlation of Olsen P with dry matter yield or P uptake. When the data at both temperatures were pooled, Olsen P was a good indicator of yield and uptake for the English soil. For the Pakistani soils, Olsen P after 45 degreesC treatment was an underestimate relative to the 10 degreesC data and for the Colombian soil it was an overestimate. The reasons for these differences need to be explored further before high temperature incubation can be used to simulate long-term changes in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soils that receive large applications of animal wastes and sewage sludge are vulnerable to releasing environmentally significant concentrations of dissolved P available to subsurface flow owing to the gradual saturation of the soil's P sorption capacity. This study evaluated P sorption (calculated from Langmuir isotherms) and availability of P (as CaCl2-P and resin P) in soils incubated for 20 d with poultry litter, poultry manure, cattle slurry, municipal sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)). All the P sources had a marked negative effect on P sorption and a positive effect on P availability in all soils. In the cattle slurry- and KH2PO4- treated soils, the decreases in P sorption maximum (19-66%) and binding energy (25-89%) were consistently larger than the corresponding decreases (7-41% and 11-30%) in poultry litter-, poultry manure-, and sewage sludge-treated soils. The effects of cattle slurry and KH2PO4 on P availability were, in most cases, larger than those of the other P sources. In the poultry litter, poultry manure, and sewage sludge treatments, the increase in soil solution P was inversely related (R-2 = 0.75) to the input of Ca from these relatively high Ca (13.5-42 g kg(-1)) sources. Correlation analyses implied that the magnitude of the changes in P sorption and availability was not related to the water-extractable P content of the P sources. Future research on the sustainable application of organic wastes to agricultural soils needs to consider the non-P- as well as P-containing components of the waste.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The levels of health-related phytochemicals were determined in lettuce leaf and in strawberry, raspberry and blueberry fruits grown in near-commercial conditions under plastic films of three different UV transparencies. In the red lettuce Lollo Rosso, total phenolics, anthocyanin, luteolin and quercetin levels were all raised by changing from a UV blocking film to a film of low UV transparency, and to a film of high UV transparency. The related green lettuce, Lollo Biondo, cultivated under the same conditions, showed virtually no phytochemical responses to the same variation in UV levels. Overall, the phenolic levels of strawberries, raspberries, and blueberries were unresponsive to the UV transparency of the plastic film under which the crops were grown. The significance of these findings is discussed in relation to the nutritional quality of soft fruit and salad crops which are increasingly being grown commercially under plastic tunnels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of wild-type puroindoline-b (Pin-b+) and two mutant forms having single residue substitutions (G46S or W44R) with L-alpha-dipalmitoylphosphatidyl-dl-glycerol (DPPG) as a Langmuir monolayer at the air/water interface was investigated by neutron reflectivity (NR) and Brewster angle microscopy (BAM). NR profiles were fitted using a three-layer model to enable differences in penetration of protein between the lipid headgroup and acyl regions to be determined. The data showed similar surface excesses for each of the three proteins at the interface; however, it was revealed that the depth of penetration of protein into the lipid region differed for each protein with Pin-b+ penetrating further into the acyl region of the lipid compared to the mutant forms of the protein that interacted with the headgroup region only. BAM images revealed that the domain structure of the DPPG monolayers was disrupted when Pin-b+ adsorption had reached equilibrium, suggesting protein penetration had led to compression of the lipid region. In contrast, the domain structure was unaffected by the W44R mutant, suggesting no change in compression of the lipid region and hence little or no penetration of protein into the lipid layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of amphiphilic copolymers were synthesized by free-radical copolymerization of N-vinylpyrrolidone (NVP) with vinyl propyl ether (VPE), and the structure of the copolymers was characterized by elemental analysis and gel permeation chromatography. The reactivity of VPE in copolymerization was found to be significantly lower than the reactivity of NVP, which resulted in a decrease of copolymers’ yields and molecular weights with higher content of VPE in the feed mixture. An investigation of the behavior of the copolymers in aqueous solutions at different temperatures by dynamic light scattering revealed the presence of lower critical solution temperature, which depending on the content of VPE ranged within 23−38 °C. Aqueous solutions of these copolymers were studied by fluorescent spectroscopy with pyrene as a polarity probe to reveal the formation of hydrophobic domains. The copolymers were found to be useful for enhancing the solubility of riboflavin in water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies in polytunnels were conducted to investigate the effects of ultraviolet (UV)-blocking films on naturally occurring insect pests and their arthropod natural enemies on a cucumber crop. Within tunnels clad with Antibotrytis (blocks light < 400 nm) and UVI/EVA (UV transmitting), 5.8 and 23.4 times more aphids, respectively, were recorded on traps compared with those on traps within tunnels clad with XL 385 (blocks light < 385 nm). When all plants within the UVI/EVA tunnels had become heavily infested with aphids, half of the plants in XL 385 tunnels were uninfested. More Coleoptera and thrips (approximately two times) were recorded under the UVI/EVA film than under the UV-blocking films, but for other arthropod pests (e. g. whitefly, leafhoppers), clear conclusions could not be drawn as low numbers were recorded. Substantial numbers of chalcid parasitoids and syrphids were found under the UV-blocking films, but further research is needed to evaluate fully the effect of such films on biological control of aphids. Higher syrphid numbers and more aphid mummies were recorded under the UVI/EVA film, probably because of the higher numbers of aphids present in tunnels clad with this film. The potential that UV-blocking films have as an effective component of commercial Integrated Pest Management (IPM) systems, for protected horticultural crops, is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO2 (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 g l(-1); whiled the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure. oxygen, an optimal flow rate was observed at 300 nil min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 ( +/-0.6) kJ mol(-1). (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In certain applications copolymer P123 (E21P67E21) is dissolved in water-ethanol mixtures, initially to form micellar solutions and eventually to gel. For P123 in 10, 20, and 30 wt % aqueous ethanol we used dynamic light scattering from dilute solutions to confirm micellization, oscillatory rheometry, and visual observation of mobility (tube inversion) to determine gel formation in concentrated solutions and small-angle X-ray scattering (SAXS) to determine gel structure. Except for solutions in 30 wt % aqueous ethanol, a clear-turbid transition was encountered on heating dilute and concentrated micellar solutions alike, and as for solutions in water alone (Chaibundit et al. Langmuir 2007, 23, 9229) this could be ascribed to formation of wormlike micelles. Dense clouding, typical of phase separation, was observed at higher temperatures. Regions of isotropic and birefringent gel were defined for concentrated solutions and shown (by SAXS) to have Cubic (fcc and hcp) and hexagonal structures, consistent with packed spherical and elongated micelles, respectively. The cubic gels (0, 10, and 20 wt % ethanol) were clear, while the hex gels were either turbid (0 and 10 wt % ethanol), turbid enclosing a clear region (20 wt % ethanol), or entirely clear (30 wt % ethanol). The SAXS profile was unchanged between turbid and clear regions of the 20 wt % ethanol gel. Temperature scans of dynamic moduli showed (as expected) a clear distinction between high-modulus cubic gels (G'(max) approximate to 20-30 kPa) and lower modulus hex gels (G'(max) < 10 kPa).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we carried out an investigation related to the determination of the anisotropy (b) of pores as well as the extent of microporosity (mic%) in various groups of nanostructured mesoporous materials. The mesoporous materials examined were fifteen samples belonging to the following groups of solids: MCM-48s, SBA-15s, SBA-16s, and mesoporous TiO2 anatases. The porosities of those materials were modified either during preparation or afterward by the addition of Cu(II) species and/or 3(5)-(2-pyridinyl) pyrazole (PyPzH) into the pores. The modification of porosity in each group took place to make possible the internal comparison of the b and mic% values within each group. The estimation of both the b and mic% parameters took place from the corresponding nitrogen adsorption-desorption isotherms. The new proposed method is able to detect a percentage of microporosity as low as a few percent, which is impossible by any of the methods used currently, without the use of any reference sample or standard isotherms. A meaningful inverse relationship is apparent between the b and mic% values, indicating that large values of b correspond to small values of mic%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM(81) triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.