925 resultados para Land-use mix
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.
Resumo:
Bella Vista City, Corrientes, Argentina, reported an epidemic outbreak of tegumentary leishmaniasis during 2003. The mean age of the 31 cases was 25.0 ± 13.7 years old, with a sex ratio male:female 1.8, and without mucosal involvement. They clustered in two contiguous neighbourhoods, 96% in the periurban border and 4% in the peripheral outskirts. The transmission peak was estimated to have occurred during April 2003. Four species (3608 sand flies) were captured in nine sites: Lutzomyia neivai (90.1%), Lu. pessoai (8.9%), Lu. migonei (0.8 %), and Brumptomyia avellari (0.2 %). The outskirts/rural capture ratio of Lu. neivai was up to 3, and the outskirts/periurban up to 200. Therefore, the 'urban' transmission in this southernmost known focus is still an ecotone-border associated risk. The changes in human distribution or activities, patches of the secondary vegetation, periurban streams, rainfall of the previous year, and river period floods could all contribute to 'urban' outbreaks in the region. Tegumentary leishmaniasis risk should be assessed for any project that involves changes in land use throughout an endemic area.
Resumo:
Understanding the different background landscapes in which malaria transmission occurs is fundamental to understanding malaria epidemiology and to designing effective local malaria control programs. Geology, geomorphology, vegetation, climate, land use, and anopheline distribution were used as a basis for an ecological classification of the state of Roraima, Brazil, in the northern Amazon Basin, focused on the natural history of malaria and transmission. We used unsupervised maximum likelihood classification, principal components analysis, and weighted overlay with equal contribution analyses to fine-scale thematic maps that resulted in clustered regions. We used ecological niche modeling techniques to develop a fine-scale picture of malaria vector distributions in the state. Eight ecoregions were identified and malaria-related aspects are discussed based on this classification, including 5 types of dense tropical rain forest and 3 types of savannah. Ecoregions formed by dense tropical rain forest were named as montane (ecoregion I), submontane (II), plateau (III), lowland (IV), and alluvial (V). Ecoregions formed by savannah were divided into steppe (VI, campos de Roraima), savannah (VII, cerrado), and wetland (VIII, campinarana). Such ecoregional mappings are important tools in integrated malaria control programs that aim to identify specific characteristics of malaria transmission, classify transmission risk, and define priority areas and appropriate interventions. For some areas, extension of these approaches to still-finer resolutions will provide an improved picture of malaria transmission patterns.
Resumo:
Background Maternal exposure to air pollution has been related to fetal growth in a number of recent scientific studies. The objective of this study was to assess the association between exposure to air pollution during pregnancy and anthropometric measures at birth in a cohort in Valencia, Spain. Methods Seven hundred and eighty-five pregnant women and their singleton newborns participated in the study. Exposure to ambient nitrogen dioxide (NO2) was estimated by means of land use regression. NO2 spatial estimations were adjusted to correspond to relevant pregnancy periods (whole pregnancy and trimesters) for each woman. Outcome variables were birth weight, length, and head circumference (HC), along with being small for gestational age (SGA). The association between exposure to residential outdoor NO2 and outcomes was assessed controlling for potential confounders and examining the shape of the relationship using generalized additive models (GAM). Results For continuous anthropometric measures, GAM indicated a change in slope at NO2 concentrations of around 40 μg/m3. NO2 exposure >40 μg/m3 during the first trimester was associated with a change in birth length of -0.27 cm (95% CI: -0.51 to -0.03) and with a change in birth weight of -40.3 grams (-96.3 to 15.6); the same exposure throughout the whole pregnancy was associated with a change in birth HC of -0.17 cm (-0.34 to -0.003). The shape of the relation was seen to be roughly linear for the risk of being SGA. A 10 μg/m3 increase in NO2 during the second trimester was associated with being SGA-weight, odds ratio (OR): 1.37 (1.01-1.85). For SGA-length the estimate for the same comparison was OR: 1.42 (0.89-2.25). Conclusions Prenatal exposure to traffic-related air pollution may reduce fetal growth. Findings from this study provide further evidence of the need for developing strategies to reduce air pollution in order to prevent risks to fetal health and development.
Resumo:
This article compares the mid-nineteenth century landscape of the River Tordera delta with the present day landscape, based, above all, on the changes that have occurred in land use and land cover. The mid 19th century landscape was reconstructed using data obtained from the amillaraments (land inventories) and other historical documents. Present-day land use and cover was established through photo interpretation and field work. The most important changes detected concern the almost complete disappearance of certain crops, such as vineyards, which were very important in the 19th century; the expansion of forest in place of abandoned tilled land and the increase in built up areas, which, taken together, produce a highly fragmented landscape pattern
Resumo:
Rhodnius ecuadoriensis is considered the second most important vector of Chagas disease in Ecuador. It is distributed across six of the 24 provinces and occupies intradomiciliary, peridomiciliary and sylvatic habitats. This study was conducted in six communities within the coastal province of Guayas. Triatomine searches were conducted in domestic and peridomestic habitats and bird nests using manual searches, live-bait traps and sensor boxes. Synantrhopic mammals were captured in the domestic and peridomestic habitats. Household searches (n = 429) and randomly placed sensor boxes (n = 360) produced no live triatomine adults or nymphs. In contrast, eight nymphs were found in two out of six searched Campylorhynchus fasciatus (Troglodytidae) nests. Finally, Trypanosoma cruzi DNA was amplified from the blood of 10% of the 115 examined mammals. Environmental changes in land use (intensive rice farming), mosquito control interventions and lack of intradomestic adaptation are suggested among the possible reasons for the lack of domestic triatomine colonies.
Resumo:
Geographical Information Systems (GIS) facilitate access to epidemiological data through visualization and may be consulted for the development of mathematical models and analysis by spatial statistics. Variables such as land-cover, land-use, elevations, surface temperatures, rainfall etc. emanating from earth-observing satellites, complement GIS as this information allows the analysis of disease distribution based on environmental characteristics. The strength of this approach issues from the specific environmental requirements of those causative infectious agents, which depend on intermediate hosts for their transmission. The distribution of these diseases is restricted, both by the environmental requirements of their intermediate hosts/vectors and by the ambient temperature inside these hosts, which effectively govern the speed of maturation of the parasite. This paper discusses the current capabilities with regard to satellite data collection in terms of resolution (spatial, temporal and spectral) of the sensor instruments on board drawing attention to the utility of computer-based models of the Earth for epidemiological research. Virtual globes, available from Google and other commercial firms, are superior to conventional maps as they do not only show geographical and man-made features, but also allow instant import of data-sets of specific interest, e.g. environmental parameters, demographic information etc., from the Internet.
Resumo:
The association between land use and land cover changes between 1979-2004 in a 2.26-million-hectare area south of the Gran Chaco region and Trypanosoma cruzi infection in rural communities was analysed. The extent of cultural land, open and closed forests and shrubland up to 3,000 m around rural communities in the north, northwest and west of the province of Córdoba was estimated using Landsat satellite imagery. The T. cruzi prevalence was estimated with a cross-sectional serological survey conducted in the rural communities. The land cover showed the same patterns in the 1979, 1999 and 2004 satellite imagery in both the northwest and west regions, with shrinking regions of cultured land and expanding closed forests away from the community. The closed forests and agricultural land coverage in the north region showed the same trend as in the northwest and west regions in 1979 but not in 1999 or 2004. In the latter two years, the coverage remote from the communities was either constant or changed in opposite ways from that of the northwest and west regions. The changes in closed forests and cultured vegetation alone did not have a significant, direct relationship with the occurrence of rural communities with at least one person infected by T. cruzi. This study suggests that the overall decrease in the prevalence of T. cruzi is a consequence of a combined effect of vector control activities and changes in land use and land cover.
Resumo:
Remote sensing and geographical information technologies were used to discriminate areas of high and low risk for contracting kala-azar or visceral leishmaniasis. Satellite data were digitally processed to generate maps of land cover and spectral indices, such as the normalised difference vegetation index and wetness index. To map estimated vector abundance and indoor climate data, local polynomial interpolations were used based on the weightage values. Attribute layers were prepared based on illiteracy and the unemployed proportion of the population and associated with village boundaries. Pearson's correlation coefficient was used to estimate the relationship between environmental variables and disease incidence across the study area. The cell values for each input raster in the analysis were assigned values from the evaluation scale. Simple weighting/ratings based on the degree of favourable conditions for kala-azar transmission were used for all the variables, leading to geo-environmental risk model. Variables such as, land use/land cover, vegetation conditions, surface dampness, the indoor climate, illiteracy rates and the size of the unemployed population were considered for inclusion in the geo-environmental kala-azar risk model. The risk model was stratified into areas of "risk"and "non-risk"for the disease, based on calculation of risk indices. The described approach constitutes a promising tool for microlevel kala-azar surveillance and aids in directing control efforts.
Resumo:
Habitat loss and fragmentation due to land use changes are major threats to biodiversity in forest ecosystems, and they are expected to have important impacts on many taxa and at various spatial scales. Species richness and area relationships (SARs) have been used to assess species diversity patterns and drivers, and thereby in the establishment of conservation and management strategies. Here we propose a hierarchical approach to achieve deeper insights on SARs in small forest islets in intensive farmland and to address the impacts of decreasing naturalness on such relationships. In the intensive dairy landscapes of Northwest Portugal, where small forest stands (dominated by pines, eucalypts or both) represent semi-natural habitat islands, 50 small forest stands were selected and surveyed for vascular plant diversity. A hierarchical analytical framework was devised to determine species richness and inter- and intra-patch SARs for the whole set of forest patches (general patterns) and for each type of forest (specific patterns). Differences in SARs for distinct groups were also tested by considering subsets of species (native, alien, woody, and herbaceous). Overall, values for species richness were confirmed to be different between forest patches exhibiting different levels of naturalness. Whereas higher values of plant diversity were found in pine stands, higher values for alien species were observed in eucalypt stands. Total area of forest (inter-patch SAR) was found not to have a significant impact on species richness for any of the targeted groups of species. However, significant intra-patch SARs were obtained for all groups of species and forest types. A hierarchical approach was successfully applied to scrutinise SARs along a gradient of forest naturalness in intensively managed landscapes. Dominant canopy tree and management intensity were found to reflect differently on distinct species groups as well as to compensate for increasing stand area, buffering SARs among patches, but not within patches. Thus, the maintenance of small semi-natural patches dominated by pines, under extensive practices of forest management, will promote native plant diversity while at the same time contributing to limit the expansion of problematic alien invasive species.
Resumo:
Actualment la situació del mercat espanyol i català del biodièsel es caracteritza per les grans importacions d’oli de palma africana. Per a produir aquesta matèria primera s’estan establint plantacions a gran escala d’Elaeis guineensis (palma africana) a Indonèsia. El monocultiu d’Elaeis guineensis i la producció de l’oli tenen associats grans impactes ambientals i socials. Per una banda, els impactes ambientals són principalment la desforestació, el canvi d’ús del sòl, la pèrdua de biodiversitat, l’erosió del sòl i la contaminació de l’aire, del sòl de l’aigua. Per altra banda, els impactes socials més destacats són la violació dels drets humans dels pobles indígenes, els conflictes d’adquisició de terres i que es compromet la seguretat alimentària del país. Per tant, l’ús del biodièsel produït amb oli de palma africana redueix les emissions de GEH a Espanya i a Catalunya provocant un gran impacte ambiental i social a Indonèsia.
Resumo:
L’Anàlisi de Cicle de Vida (ACV) és una eina emprada per gestionar els impactes ambientals i els recursos usats al llarg del cicle de vida d’un bé o servei. Existeixen reptes de futur en el desenvolupament de l’ACV, tals com la introducció de noves categories d’impacte ambiental, que permetin una anàlisi més específica dels impactes sobre determinats elements del medi, com ara el paisatge. En el present estudi s’analitza la dimensió natural del paisatge per tal de proposar la creació d’un índex de paisatge. Així doncs, s’han revisat les noves propostes de categories d’impacte en ACV que inclouen directament o indirecta el paisatge i s’ha analitzat una mostra de 33 estudis d’indicadors de paisatge. Aquesta cerca deriva en l’elecció de 6 indicadors: els usos del sòl, la diversitat paisatgística, la fragmentació, la connectivitat, la riquesa d’espècies i la densitat de carreteres. En la determinació dels seus respectius mètodes de càlcul s’ha detectat la importància de l’ús dels SIG, l’elecció d’una base de dades d’usos del sòl comuna (CORINE) i les interrelacions que existeixen entre indicadors. La proposta de l’índex hauria de poder ésser un punt de partida per a futurs estudis en aquest àmbit i derivar en una nova categoria d’impacte de paisatge, donat que caldrà estudiar alguns elements, com la interrelació entre indicadors.
Resumo:
Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways because of adaptation to their environment. Here, we introduced ancestry distribution models, that is, statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25 to 4 °C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a north-east direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2 °C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km) and by 188 km for an increase of 4 °C (minimum of 11 km, maximum of 393 km). Intra-specific turnover-measuring the extent of change in global population genetic structure-was generally found to be moderate for 2 °C of temperature warming. For 4 °C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species and complement more traditional distribution-based approaches.
Resumo:
Annual report for Iowa Department of Public Safety