967 resultados para Lakes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water chestnut (Trapa natans L.,sensu lato) is an annual, floating-leaved aquatic plant of temperate and tropical freshwater wetlands, rivers, lakes, ponds, and estuaries. Native to Eurasia and Africa, water chestnut has been widely gathered for its large nutritious seed since the Neolithic and is cultivated for food in Asia. Water chestnut is now a species of conservation concern in Europe and Russia. Introduced to the northeastern United States in the mid-1800s, the spread of water chestnut as a nuisance weed was apparently favored by cultural eutrophication. Water chestnut is considered a pest in the U.S. because it forms extensive, dense beds in lakes, rivers, and freshwater-tidal habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A limnological and fish survey program was developed on 112 lakes and reservoirs of Argentina during the summers of 1984 to 1987. Bathymetric surveys with a SIMRAD Skipper 411 model echosounder and line and lead were conducted on more than 40 lakes. This report presents bathymetric maps for seventeen lakes and reservoirs situated in Patagonian Andes Region and Patagonian Plateau betweem 3853'S and 4530'S. The bathymetric maps for two reservoirs were made from topographic maps before impoundment. Hypsographic and depth-area curves, and some morphometric parameters are presented for twenty one Patagonian lakes. Mean depth ranged from 2.0 to 111 m. The deepest lakes are situated in Patagonian Andes Region. Colhue Huapi Lake on Patagonian Plateau, is very shallow, having a mean depth of 2.0 m and being 810 km. in surface area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A limnological and fish survey program was developed on 110 lakes and reservoirs of Argentina during the summers of 1984 to 1987. Here we exclude lakes without fish. Lakes and reservoirs were visited once each, except for six situated in Chubut Province that were studied seasonally over the course of two years. Here we present raw data used to evaluate the potential fish yield of Argentinian lakes and reservoirs. (Document contains 56 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A limnological and fish survey program was developed in 110 lakes and reservoirs of Argentina during the summers of 1984 to 1987. Lakes and reservoirs were visited once, except for six situated in the Chubut Province that were studied seasonally over the course of two years. The sampling surveys were performed by the "Instituto Nacional de Investigacin y Desarrollo Pesquero" and the "Provincia de Chubut". Here we present preliminary results of potential fish yield assessment on a regional basis, using empirical models. (Document contains 11 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age and growth of populations of three fish species from sixteen lakes and reservoirs situated in the Patagonian Andean and the Patagonian Plateau Region (Argentina) were studied. They included two native species, the Patagonian smallmouth perch. (Percichthys trucha) and the Patagonian silverside (Patagonina hatcheri) and the introduced rainbow trout (Oncorhynchus mykiss). For the three species backcalculated lenght at age was obtained from scale readings. Von Bertalanffy growth curves were usually adjusted to data. For the three species, faster growth was related with lake productivity. (Document contains 38 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introductions of salmonids in Argentina can be considered as successfull. The have become established as reproducing populations in southern and middle-western lakes and reservoirs. An extensive sampling programme on 112 lakes and reservoirs was carried out during the summers of 1984 to 1987. Environmental features that determine their present distribution were analyzed. The hypothesis, which we used as starting-point, is that it has been attempted to introduce at least once and least one species of salmonids in all lakes and reservoirs of Argentina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cambodia is one of the poorest countries in the world; much of its population live in rural areas and many live below the local poverty line. The management of common property aquatic resources is of over-riding importance to food security and sustainable rural development in Cambodia. The key groups of poor people who use aquatic resources as part of their diverse livelihoods portfolios are subsistence fishers, small-scale aquaculture practitioners and aquatic resources collectors. Subsistence fishers access mainly the rivers, lakes and inundated forests in Tonle Sap provinces, the lower Mekong and Bassac regions and the upper part of the Mekong. Small-scale aquaculture and/or the collection of aquatic resources are most important in provinces that are not rich in fisheries resources including Kompong Speu, Ratnakiri, Mondulkiri, Preah Vihear and Ortdar Meanchey. Freshwater capture fisheries probably contribute more to national food security and the national economy in Cambodia than in any other country in the world. (19 p.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many Central Florida lakes, particularly those in the Kissimmee River watershed, are maintained 0.5 to 1.0 m lower than historic (pre-1960) levels during the summer hurricane season for flood control purposes. These lower water levels have allowed proliferation and formation of dense monotypic populations of pickerelweed ( Pontederia cordata L.) and other broadleaf species that out compete more desirable native grasses (Hulon, pers. comm., 2002). Due to the limited availability of data on the effects of metsulfuron methyl on wetland plants, particularly in Florida, the present study was carried out with the objective of testing its phytotoxicity on six wetland species, to determine the feasibility of its use for primary pickerelweed control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four fungal species, F71PJ Acremonium sp., F531 Cylindrocarpon sp., F542, Botrytis sp., and F964 Fusarium culmorum [Wm. G. Sm.] Sacc. were recovered from hydrilla [ Hydrilla verticillata (L. f.) Royle] shoots or from soil and water surrounding hydrilla growing in ponds and lakes in Florida and shown to be capable of killing hydrilla in a bioassay. The isolates were tested singly and in combination with the leaf-mining fly, Hydrellia pakistanae (Diptera: Ephydridae), for their capability to kill or severely damage hydrilla in a bioassay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of aquatic plant biomass within Cayuga Lake, New York spans twelve years from 1987-1998. The exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) decreased in the northwest end of the lake from 55% of the total biomass in 1987 to 0.4% in 1998 and within the southwest end from 50% in 1987 to 11% in 1998. Concurrent with the watermilfoil decline was the resurgence of native species of submersed macrophytes. During this time we recorded for the first time in Cayuga Lake two herbivorous insect species: the aquatic moth Acentria ephemerella , first observed in 1991, and the aquatic weevil Euhrychiopsis lecontei , first found in 1996 . Densities of Acentria in southwest Cayuga Lake averaged 1.04 individuals per apical meristem of Eurasian watermilfoil for the three-year period 1996-1998. These same meristems had Euhrychiopsis densities on average of only 0.02 individuals per apical meristem over the same three-year period. A comparison of herbivore densities and lake sizes from five lakes in 1997 shows that Acentria densities correlate positively with lake surface area and mean depth, while Euhrychiopsis densities correlate negatively with lake surface area and mean depth. In these five lakes, Acentria densities correlate negatively with percent composition and dry mass of watermilfoil. However, Euhrychiopsis densities correlate positively with percent composition and dry mass of watermilfoil. Finally, Acentria densities correlate negatively with Euhrychiopsis densities suggesting interspecific competition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarine and coastal pollutant monitoring effort conducted in the United States that is national in scope each year. Hundreds of scientific journal articles and technical reports based on Mussel Watch data have been written; however, this report is the first that presents local, regional and national findings across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public. Pollution often starts at the local scale where high concentrations point to a specific source of contamination, yet some contaminants such as PCBs are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Findings presented here showed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas. In addition to monitoring throughout the nations coastal shores and Great Lakes, Mussel Watch samples are stored in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. For example, there is heightened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenyl ethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminant threats. We hope you find this document to be valuable, and that you continue to look towards the Mussel Watch Program for information on the condition of your coastal waters. (PDF contains 118 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring cookbook that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cambodia is one of the poorest countries in the world; much of its population live in rural areas and many live below the local poverty line. The management of common property aquatic resources is of over-riding importance to food security and sustainable rural development in Cambodia. Aquatic resources are utilized principally by subsistence fishers and the landless, for whom aquatic resource use is an important livelihood activity. Subsistence fishers access mainly the rivers, lakes and inundated forests in Tonle Sap provinces, the lower Mekong and Bassac regions and the upper part of the Mekong. Freshwater capture fisheries probably contribute more to national food security and the national economy in Cambodia than in any other country in the world. (PDF contains 52 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5F. By 2100, it is projected to rise another 2 to 11.5F. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7F. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]