949 resultados para LOW DOSE IRRADIATION
Resumo:
Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.
Resumo:
Irradiation is a methodology qualified for dry ingredients preservation or decontamination and can be performed using various radiation sources and energy levels in accordance with the objectives to be achieved [1]. Electron beam irradiation is used mainly for food products with low density, while gamma irradiation is mainly used for large volumes [2]. Arenaria Montana L. has a high antioxidant potential and richness in bioactive phytochemicals. It is used in Portuguese traditional medicine, acting therapeutically as an anti-inflammatory and diuretic plant [3]. The aim of this work was to evaluate the effects of gamma and electron beam irradiation at different doses (I and 10 kGy) in the antioxidant activity of A. montana. Free radicals scavenging activity, reducing power and lipid peroxidation inhibition properties of its methanolic extracts and infusions were evaluated. Through a global analysis, it was concluded that the antioxidant activity proved to be higher in methanolic extracts in comparison with the infusions, where it decreased with increasing irradiation dose regardless of the technology used (gamma or electron beam). For methanolic extracts, electron beam resulted in increased antioxidant activity while gamma irradiation caused a decrease in these extracts. Thus, the antioxidant potential is variable depending not only on the type of radiation and the dose applied, but also on the solvent used in the preparation of the extracts (methanol or water).
Resumo:
Irradiation is recognized by international organizations as a conservation technology, and its application to wild mushrooms has been tested in some species. Our research group evaluated the effectiveness of gamma irradiation to conserve different samples of highly appreciated species, particularly, Lactarius deliciosus, Macrolepiota procera, Boletus edulis and Hydnum repandum. From those results and considering also international recommendations on this subject, the 2 kGy dose was chosen for further studies. Therefore, the application of gamma irradiation at 2 kGy dose was extended to Boletus pinophilus Pilát & Dermek and Clitocybe subconnexa Murrill to validate the proposed technology. Considering the obtained results, some of the analysed chemical parameters (specially sugars and fatty acids), as well as the antioxidant activity, showed significant changes after irradiation treatment, particularly in B. pinophillus, probably due to its higher water content. Nevertheless, the obtained differences did not seem to be sufficient to change the organoleptic characteristics of these mushrooms. Furthermore, the antioxidant activity was generally higher in irradiated samples. In conclusion, the detected chemical changes might be considered as acceptable, when considering the high advantages of gamma irradiation at decontamination and/or disinfestation level.
Resumo:
Radiotherapy (RT) is a risk factor for accelerated carotid artery atherosclerotic disease in subjects with head and neck cancer. However, the risk factors of RT-induced carotid artery remodeling are not established. This study aimed to investigate the effects of RT on carotid and popliteal arteries in subjects with head and neck cancer and to evaluate the relationship between baseline clinical and laboratory features and the progression of RT-induced atherosclerosis. Eleven men (age = 57.9 ± 6.2years) with head and neck cancer who underwent cervical bilateral irradiation were prospectively examined by clinical and laboratory analysis and by carotid and popliteal ultrasound before and after treatment (mean interval between the end of RT and the post-RT assessment = 181 ± 47 days). No studied subject used hypocholesterolemic medications. Significant increases in carotid intima-media thickness (IMT) (0.95 ± 0.08 vs. 0.87 ± 0.05 mm; p < 0.0001) and carotid IMT/diameter ratio (0.138 ± 0.013 vs. 0.129 ± 0.014; p = 0.001) were observed after RT, while no changes in popliteal structural features were detected. In addition, baseline low-density lipoprotein cholesterol levels showed a direct correlation with RT-induced carotid IMT change (r = 0.66; p = 0.027), while no other studied variable exhibited a significant relationship with carotid IMT change. These results indicate that RT-induced atherosclerosis is limited to the irradiated area and also suggest that it may be predicted by low-density lipoprotein cholesterol levels in subjects with head and neck cancer.
Resumo:
Phase I trials use a small number of patients to define a maximum tolerated dose (MTD) and the safety of new agents. We compared data from phase I and registration trials to determine whether early trials predicted later safety and final dose. We searched the U.S. Food and Drug Administration (FDA) website for drugs approved in nonpediatric cancers (January 1990-October 2012). The recommended phase II dose (R2PD) and toxicities from phase I were compared with doses and safety in later trials. In 62 of 85 (73%) matched trials, the dose from the later trial was within 20% of the RP2D. In a multivariable analysis, phase I trials of targeted agents were less predictive of the final approved dose (OR, 0.2 for adopting ± 20% of the RP2D for targeted vs. other classes; P = 0.025). Of the 530 clinically relevant toxicities in later trials, 70% (n = 374) were described in phase I. A significant relationship (P = 0.0032) between increasing the number of patients in phase I (up to 60) and the ability to describe future clinically relevant toxicities was observed. Among 28,505 patients in later trials, the death rate that was related to drug was 1.41%. In conclusion, dosing based on phase I trials was associated with a low toxicity-related death rate in later trials. The ability to predict relevant toxicities correlates with the number of patients on the initial phase I trial. The final dose approved was within 20% of the RP2D in 73% of assessed trials.
Resumo:
Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification.
Resumo:
This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well) and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC), and the cells grown in conditioned medium and non-irradiated served as negative control group (NC). Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm²) emitting at visible red (660 nm; RL) or near infrared (780 nm; NIR) using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05). The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.
Effect of therapeutic dose X rays on mechanical and chemical properties of esthetic dental materials
Resumo:
The aim of this study was to investigate the influence of therapeutic dose X rays on the microhardness (MH) and degree of conversion (DC) of two different esthetic restorative dental materials. The materials were photo-activated with a LED light-curing unit using three cure-times: 5, 20 and 40 seconds. The photo-activation was carried out in two distinct periods: before and after irradiation with doses of 5, 35 and 70 Gy, from a 6 MV X rays beam. In accordance with the methodology used, it was conclude that a therapeutic dose does not have a detrimental effect on the photoinitiator molecules, because the photo-activation occurred after they were irradiated. When the irradiation was applied before photo-activation, the materials showed MH improvement, but when photo-activation was performed after irradiation, there was less improvement. However, there was no correlation between MH and DC. Thus, a therapeutic dose applied to cured material can promote linking and breaking of chain bonds in a non-linear way.
Resumo:
Background: The Brazilian consensus recommends a short-term treatment course with clarithromycin, amoxicillin and proton-pump inhibitor for the eradication of Helicobacter pylori ( H. pylori). This treatment course has good efficacy, but cannot be afforded by a large part of the population. Azithromycin, amoxicillin and omeprazole are subsidized, for several aims, by the Brazilian federal government. Therefore, a short-term treatment course that uses these drugs is a low-cost one, but its efficacy regarding the bacterium eradication is yet to be demonstrated. The study's purpose was to verify the efficacy of H. pylori eradication in infected patients who presented peptic ulcer disease, using the association of azithromycin, amoxicillin and omeprazole. Methods: Sixty patients with peptic ulcer diagnosed by upper digestive endoscopy and H. pylori infection documented by rapid urease test, histological analysis and urea breath test were treated for six days with a combination of azithromycin 500 mg and omeprazole 20 mg, in a single daily dose, associated with amoxicillin 500 mg 3 times a day. The eradication control was carried out 12 weeks after the treatment by means of the same diagnostic tests. The eradication rates were calculated with 95% confidence interval. Results: The eradication rate was 38% per intention to treat and 41% per protocol. Few adverse effects were observed and treatment compliance was high. Conclusion: Despite its low cost and high compliance, the low eradication rate does not allow the recommendation of the triple therapy with azithromycin as an adequate treatment for H. pylori infection.
Resumo:
Objective: This study investigated the effects of low-level laser therapy (LLLT) and electrical stimulation (ES) on bone loss in spinal cord-injured rats. Materials and Methods: Thirty-seven male Wistar rats were divided into four groups: standard control group (CG); spinal cord-injured control (SC); spinal cord-injured treated with laser (SCL; GaAlAs, 830 nm, CW, 30mW/cm, 250 J/cm(2)); and spinal cord-injured treated with electrical field stimulation (SCE; 1.5 MHz, 1: 4 duty cycles, 30 mW, 20 min). Biomechanical, densitometric, and morphometric analyses were performed. Results: SC rats showed a significant decrease in bone mass, biomechanical properties, and morphometric parameters (versus CG). SCE rats showed significantly higher values of inner diameter and internal and external areas of tibia diaphyses; and the SCL group showed a trend toward the same result (versus SC). No increase was found in either mechanical or densitometric parameters. Conclusion: We conclude that the mentioned treatments were able to initiate a positive bone-tissue response, maybe through stimulation of osteoblasts, which was able to determine the observed morphometric modifications. However, the evoked tissue response could not determine either biomechanical or densitometric modifications.
Resumo:
Objective: To study the effect of an 830-nm gallium-aluminum-arsenic (GaAlAs) diode laser at two different energy densities (5 and 15 J/cm(2)) on the epiphyseal cartilage of rats by evaluating bone length and the number of chondrocytes and thickness of each zone of the epiphyseal cartilage. Background Data: Few studies have been conducted on the effects of low-level laser therapy on the epiphyseal cartilage at different irradiation doses. Materials and Methods: A total of 30 male Wistar rats with 23 days of age and weighing 90 g on average were randomly divided into 3 groups: control group (CG, no stimulation), G5 group (energy density, 5 J/cm(2)), and G15 group (energy density, 15 J/cm(2)). Laser treatment sessions were administered every other day for a total of 10 sessions. The animals were killed 24 h after the last treatment session. Histological slides of the epiphyseal cartilage were stained with hematoxylin-eosin (HE), photographed with a Zeiss photomicroscope, and subjected to histometric and histological analyses. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test. All statistical tests were performed at a significance level of 0.05. Results: Histological analysis and x-ray radiographs revealed an increase in thickness of the epiphyseal cartilage and in the number of chondrocytes in the G5 and G15 groups. Conclusion: The 830-nm GaAlAs diode laser, within the parameters used in this study, induced changes in the thickness of the epiphyseal cartilage and increased the number of chondrocytes, but this was not sufficient to induce changes in bone length.
Resumo:
Objective: The aim of this study was to investigate the efficacy of an infrared GaAlAs laser operating with a wavelength of 830 nm in the postsurgical scarring process after inguinal-hernia surgery. Background: Low-level laser therapy (LLLT) has been shown to be beneficial in the tissue-repair process, as previously demonstrated in tissue culture and animal experiments. However, there is lack of studies on the effects of LLLT on postsurgical scarring of incisions in humans using an infrared 830-nm GaAlAs laser. Method: Twenty-eight patients who underwent surgery for inguinal hernias were randomly divided into an experimental group (G1) and a control group (G2). G1 received LLLT, with the first application performed 24 h after surgery and then on days 3, 5, and 7. The incisions were irradiated with an 830-nm diode laser operating with a continuous power output of 40 mW, a spot-size aperture of 0.08 cm(2) for 26 s, energy per point of 1.04 J, and an energy density of 13 J/cm(2). Ten points per scar were irradiated. Six months after surgery, both groups were reevaluated using the Vancouver Scar Scale (VSS), the Visual Analog Scale, and measurement of the scar thickness. Results: G1 showed significantly better results in the VSS totals (2.14 +/- 1.51) compared with G2 (4.85 +/- 1.87); in the thickness measurements (0.11 cm) compared with G2 (0.19 cm); and in the malleability (0.14) compared with G2 (1.07). The pain score was also around 50% higher in G2. Conclusion: Infra-red LLLT (830 nm) applied after inguinal-hernia surgery was effective in preventing the formation of keloids. In addition, LLLT resulted in better scar appearance and quality 6 mo postsurgery.
Resumo:
Objective: This study aims to investigate the effects of low-level laser therapy (LLLT) on muscle regeneration. For this purpose, the anterior tibialis muscle of 48 male Wistar rats received AlGaInP laser treatment (785 nm) after surgically-induced injury. Background Data: Few studies have been conducted on the effects of LLLT on muscle regeneration at different irradiation doses. Materials and Methods: The animals were randomized into four groups: uninjured rats (UN); uninjured and laser-irradiated rats (ULI); injured rats (IN); and injured and laser-irradiated rats (ILI). The direct contact laser treatment was started 24 h after surgery. An AlGaInP diode laser emitting 75 mW of continuous power at 785 nm was used for irradiation. The laser probe was placed at three treatment points to deliver 0.9 J per point, for a total dose of 2.7 J per treatment session. The animals were euthanized after treatment sessions 1, 2, and 4. Mounted sections were stained with hematoxylin and eosin and used for quantitative morphological analysis, in which the number of leukocytes and fibroblasts were counted over an area of 4480 mu m(2). The data were statistically analyzed by analysis of variance (ANOVA) and the Bonferroni t-test. Results: Quantitative data showed that the number of both polymorphonuclear and mononuclear leukocytes in the inflammatory infiltrate at the injury site was smaller in the ILI(1), ILI(2), and ILI(4) subgroups compared with their respective control subgroups (IN(1), IN(2), and IN(4)) for sessions 1, 2, and 4, respectively (p < 0.05). On the other hand, the number of fibroblasts increased after the fourth treatment session (p < 0.05). With regard to the regeneration of muscle fibers following injury, only after the fourth treatment session was it possible to find muscle precursor cells such as myoblasts and some myotubes in the ILI(4) subgroup. Conclusion: During the acute inflammatory phase, the AlGaInP laser treatment was found to have anti-inflammatory effects, reducing the number of leukocytes at the injury site and accelerating the regeneration of connective tissue.
Resumo:
Objective: The purpose of this study was to evaluate the effect of 830-nm laser in blocking the action of nicotine on the viability of skin flap. Background data: The authors have analyzed the deleterious effect of cigarette smoke or nicotine on the skin flap alone with evidence of increased skin necrosis in the flap. Materials and methods: Twenty-four Wistar-albino rats were divided into three groups of eight animals each: Group 1 (control), subjected to a surgical technique to obtain a flap for cranial base, laser irradiation simulation, and a subcutaneous injection of saline; Group 2, similar to Group 1, with subcutaneous injection of nicotine (2mg/kg/day) for a period of 1 week before and 1 week after surgery; and Group 3, similar to Group 2, with skin flaps subjected to a lambda 830-nm laser irradiation. The laser parameters used were: power 30 mW, beam area 0.07cm(2), irradiance 429 mW/cm(2), irradiation time 84 sec, total energy 2.52J, and energy density 36J/cm(2). The laser was used immediately after surgery and for 4 consecutive days, in one point at 2.5 cm of the flap cranial base. The areas of necrosis were examined by two macroscopic analyses: paper template and Mini-Mop (R). The pervious blood vessels were also counted. Results: The results were statistically analyzed by ANOVA and post-test contrast orthogonal method (multiple comparisons), showing that the laser decreased the area of necrosis in flaps subjected to nicotine, and consequently, increased the number of blood vessels (p < 0.05). Conclusions: The laser proved to be an effective way to decrease the area of necrosis in rats subjected to nicotine, making them similar to the control group.