928 resultados para LIQUID-PHASE EPITAXY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combined flow loop - jet impingement pilot plant has been used to determine mass loss rates in a mixed gas - saltwater - sand multiphase flow at impact velocities up to 70 m/s. Artificial brine with a salt content of 27 g/1 was used as liquid phase. Sand content, with grain size below 150 µ, was 2.7 g/l brine. CO at a pressure of 15 bar was used as gas phase. The impact angle between jet stream (nozzle) and sample surface was varied between 30 and 90°. Rectangular stainless steel disc samples with a size of 20 × 15 × 5 mm were used. They were mechanically ground and polished prior to testing. Damaged surfaces of specimens exposed to the high velocity multiphase flow were investigated by stereo microscopy, scanning electron microscopy (SEM) and an optical device for 3D surface measurements. Furthermore, samples were investigated by applying atomic force microscopy (AFM), magnetic force microscopy (MFM) and nanoindentation. Influence of impact velocity and impact angle on penetration rates (mass loss rates) of two CRAs (UNS S30400 and N08028) are presented. Moreover effects of chemical composition and mechanical properties are critically discussed. © 2008 by NACE International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A critical review of the literature concerning organic derivatives of hydrazine, the ammonia-chlorine reaction and the electrolytic formation of hydrazine has been carried out. Apparatus was constructed to study the electrolysis of liquid ammonia, the formation of chloramine and the fixation of chloramine with a ketone to form an isohydrazone. In the latter case the reaction was carried out in a 3" diameter stirred tank and also in a 1" diameter, 2' high column reactor where the liquid phase was continuously recirculated. Two methods of analysis of azines and isohydrazones in a ketone solution have been developed. One is a colorimetric technique using p-dimethylaminobenzaldehyde and the other involves the hydrolysis of the organic derivative to hydrazine sulphate. Hydrazine was detected in low concentration in some of the electrolytic experiments carried out but it was concluded that this method did not show sufficient promise to warrant further investigation. The gas phase formation of chloramine and acetone isohydrazone has also been studied but in this system difficulties were encountered with the chlorine jet blocking with ammonium chloride. The formation of isohydrazones in a stirred tank reactor has been investigated in some detail and the effect of several parameters was determined. The yield was found to be extremely sensitive to chlorine concentration and in order to obtain yields of more than 90 per cent, the molar concentration of chlorine in the gas phase had to be of the order of 5 per cent. An optimum temperature in the region of 0°C was also detected. These results disagree with those quoted in previous studies but extensive experimental work has confirmed the information presented in this thesis. It has also been shown that at high yields the chloramine formation reaction took place in the gas phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The simulation of two-phase flow in bubble columns using commercially available software fromFluent Incorporated is presented here. Data from a bubble column with a ratio of height to thecolumn diameter of 5 : 1 are compared with simulations and experimental results for time-averaged velocity and Reynolds stress proles are used to validate transient, two-dimensional simulations.The models are based on multiphase biological reactors with applications in the food industry. An example case of the mass transfer of oxygen through the liquid phase is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agitating liquids in unbaffled stirred tank leads to the formation of a vortex in the region of the impeller shaft when operating in the turbulent flow regime. A numerical model is presented here that captures such a vortex. The volume of fluid model, a multiphase flow model was employed in conjunction with a multiple reference frame model and the shear stress turbulence model. The dimensions of the tank considered here, were 0.585 m for the liquid depth and tank diameter with a 0.2925 m diameter impeller at a height of 0.2925 m. The impeller considered was an eight-bladed paddle type agitator that was rotating with an angular velocity of 7.54 rad s (72 rpm) giving a Reynolds number of 10 and Froude number of 0.043. Preliminary results of a second investigation into the effect of liquid phase properties on the vortex formed are also presented. © 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal evolution of titania-supported Au shell–Pd core bimetallic nanoparticles, prepared via colloidal routes, has been investigated by in situ XPS, DRIFTS, EXAFS and XRD and ex situ HRTEM. As-prepared nanoparticles are terminated by a thin (∼5 layer) Au shell, encapsulating approximately 20 nm diameter cuboctahedral palladium cores, with the ensemble stabilised by citrate ligands. The net gold composition was 40 atom%. Annealing in vacuo or under inert atmosphere rapidly pyrolyses the citrate ligands, but induces only limited Au/Pd intermixing and particle growth <300 °C. Higher temperatures promote more dramatic alloying, accompanied by significant sintering and surface roughening. These changes are mirrored by the nanoparticle catalysed liquid phase selective aerobic oxidation of crotyl alcohol to crotonaldehyde; palladium surface segregation enhances both activity and selectivity, with the most active surface alloy attainable containing ∼40 atom% Au.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first demonstration of heterogeneous catalysis within an oscillatory baffled flow reactor (OBR) is reported, exemplified by the solid acid catalysed esterification of organic acids, an important prototypical reaction for fine chemicals and biofuel synthesis. Suspension of a PrSOH-SBA-15 catalyst powder is readily achieved within the OBR under an oscillatory flow, facilitating the continuous esterification of hexanoic acid. Excellent semi-quantitative agreement is obtained between OBR and conventional stirred batch reaction kinetics, demonstrating efficient mixing, and highlighting the potential of OBRs for continuous, heterogeneously catalysed liquid phase transformations. Kinetic analysis highlights acid chain length (i.e. steric factors) as a key predictor of activity. Continuous esterification offers improved ester yields compared with batch operation, due to the removal of water by-product from the catalyst, evidencing the versatility of the OBR for heterogeneous flow chemistry and potential role as a new clean catalytic technology. © The Royal Society of Chemistry 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural dolomitic rock has been investigated in the transesterification of C and C triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 °C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production. © The Royal Society of Chemistry 2008.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surfactant templating offers a simple route to synthesize high-surface area silicas with ordered, tunable mesopore architectures. The use of these materials as versatile catalyst supports for palladium nanoparticles has been explored in the aerobic selective oxidation (selox) of allylic alcohols under mild conditions. Families of Pd/mesoporous silicas, synthesized through incipient wetness impregnation of SBA-15, SBA-16, and KIT-6, have been characterized by using nitrogen porosimetry, CO chemisorption, diffuse reflection infrared Fourier transform spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution TEM and benchmarked in liquid phase allylic alcohol selox against a Pd/amorphous SiO2 standard. The transition from amorphous to two-dimensional parallel and three-dimensional interpenetrating porous silica networks conferred significant selox rate enhancements associated with higher surface densities of active palladium oxide sites. Dissolved oxygen was essential for insitu stabilization of palladium oxide, and thus maintenance of high activity on-stream, whereas selectivity to the desired aldehyde selox product over competing hydrogenolysis pathways was directed by using palladium metal. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The selective conversion of alcohols to their carbonyl derivatives is a critical step towards a sustainable chemical industry. Heterogeneous Pd catalysts represent some of the most active systems known, even so further studies into the active species and role of support are required. Through controlling support mesostructure, using non-interconnected SBA-15 and interlinked SBA-16 and KIT-6, we have evaluated the role of pore architecture on supported Pd nanoparticles and their subsequent activity for liquid phase aerobic allylic alcohol selective oxidation.[1,2] These synthesised silica supports exhibit high surface areas (>800 m2g-1), and similar mesopore diameters (3.5 to 5 nm), but differ in their pore connectivity and arrangement; p6mm (SBA-15), I3mm (SBA-16) and I3ad (KIT-6). When evaluated alongside commercial non-mesoporous silica (200 m2 g-1) they promote enhanced Pd dispersion with interpenetrating assemblies providing further elevation. Macropore introduction into SBA-15, producing a hierarchical macro-mesoporous silica (MM-SBA-15), allows control over mesopore length and accessibility which escalates Pd distribution to levels akin to KIT-6 and SBA-16. Controlling dispersion, and likewise nanoparticle size, is thus facilitated through the choice of support and additionally Pd loading, with cluster sizes spanning 3.2 to 0.8 nm. X-ray spectroscopies indicate nanoparticles are PdO terminated with the oxide content a function of dispersion. Kinetic studies allude to surface PdO being the active site responsible, with a constant TOF observed, independent of loading and support. This confirms activity is governed by PdO density, whilst also overruling internal mass diffusion constraints. MM-SBA-15 facilitates superior activity and TOFs for long chain acyclic terpene alcohols due to reduced internal mass transport constraints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive, but not a reactant. Heterogeneous catalysts play an unseen role in many of today's processes and products. With the increasing emphasis on sustainability in both products and processes, this handbook is the first to combine the hot topics of heterogeneous catalysis and clean technology. It focuses on the development of heterogeneous catalysts for use in clean chemical synthesis, dealing with how modern spectroscopic techniques can aid the design of catalysts for use in liquid phase reactions, their application in industrially important chemistries - including selective oxidation, hydrogenation, solid acid- and base-catalyzed processes - as well as the role of process intensification and use of renewable resources in improving the sustainability of chemical processes. With its emphasis on applications, this book is of high interest to those working in the industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Size-controlled, catalytically active PVP-stabilised Pd nanoparticles have been studied by operando liquid phase XAS during the Suzuki cross-coupling of iodonanisole and phenylboronic acid in MeOH-toluene using KOMe base. XAS reveals nanoparticles are stable to metal leaching throughout the reaction, with surface density Pd defect sites directly implicated in the catalytic cycle. The efficacy of popular selective chemical and structural poisons for distinguishing heterogeneous and homogeneous contributions in Pd catalysed cross-couplings is also explored. © 2010 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The selective oxidation of crotyl alcohol has been explored over a Pd(111) model catalyst. At low temperatures, the alcohol adsorbs intact with the C=C bond parallel to the surface. Activation likely proceeds through an allyl alkoxide intermediate that follows two distinct reaction channels. Over the clean surface, ∼90% of the alcohol oxidizes to surface bound crotonaldehyde above 200 K, which subsequently all decarbonylates to propene and CO at room temperature. The minor reaction channel involves C-O scission to 2-butene and water. While some of these undesired reactively formed alkene products desorb around 300 K, the majority dehydrogenate to irreversibly bound carbon above 380 K. This latter decomposition pathway is unlikely to be important at the low temperatures utilized in liquid-phase crotyl alcohol oxidation over supported palladium catalysts. Adsorbed CO persists until 430 K and is likely responsible for site-blocking and deactivation of dispersed metallic Pd clusters. Coadsorbed oxygen suppresses crotonaldehyde decarbonylation and promotes its release from the surface. © 2007 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly dispersed H3PW12O40/SiO2 catalysts with loadings between 3.6 and 62.5 wt% have been synthesised and characterised. The formation of a chemically distinct interfacial HPW species is identified by XPS, attributed to pertubation of W atoms within the Keggin cage in direct contact with the SiO2 surface. EXAFS confirms the Keggin unit remains intact for all loadings, while NH3 adsorption calorimetery reveals the acid strength >0.14 monolayers of HPW is loading invariant with initial ΔHads = −164 kJ mol−1. Lower loading catalysts exhibit weaker acidity which is attributed to an inability of highly dispersed clusters to form crystalline water. For reactions involving non-polar hydrocarbons the interfacial species where the accessible tungstate is highest confer the greatest reactivity, while polar chemistry is favoured by higher loadings which can take advantage of the H3PW12O40 pseudo-liquid phase available within supported multilayers. © the Owner Societies 2006.