869 resultados para Knee prosthesis replacement
Resumo:
Patients with growth hormone deficiency (GHD) have increased cardiovascular risk and may show elevated triglyceride and reduced high density lipoprotein (HDL) cholesterol concentrations, two lipid abnormalities usually accompanied by increased small dense LDL in the 'atherogenic lipoprotein phenotype' (ALP). In the present study, we directly investigated (1) whether hypopituitary patients with GHD have increased small dense LDL; (2) whether growth hormone replacement therapy (GHRT) beneficially impact on such particles; (3) the prevalence of ALP in GHD and GHRT patients.
Resumo:
BACKGROUND: Different studies have analyzed the potential impact of the underlying pathologic process and the use of deep hypothermic circulatory arrest on outcome and quality of life after surgery on the thoracic aorta. The aim of this study is to analyze the impact of different surgical procedures on outcome and quality of life. METHODS: Between June 2001 and December 2003, 244 patients underwent surgery for various diseases of the ascending aorta with or without involvement of the aortic valve or root. They were divided according to the operative procedure: 76 patients (31.2%) underwent isolated replacement of the ascending aorta, 42 patients (17.2%) received separate aortic valve replacement and supracoronary replacement of the ascending aorta, 86 patients (35.2%) received a mechanical composite graft, and 40 patients (16.4%) received a biologic composite graft. All in-hospital data were assessed, and a follow-up was performed in all survivors after 26.6 +/- 8.8 months, focusing on outcome and quality of life (SF-36). RESULTS: Overall in-hospital mortality was 6.1%, and late mortality was 5.7%, with no significant difference between groups. Independent of the surgical technique and the extent of surgery, there was no difference in quality of life between the surgical collective and an age-matched and sex-matched standard population. CONCLUSIONS: Operations of the ascending aorta and aortic valve are very safe, with low in-hospital mortality and favorable midterm outcome regarding late mortality and morbidity. Quality of life after operations of the ascending aorta and aortic valve is equal to a standard population and is not affected by the surgical procedure. Liberal use of aortic root replacement is therefore justified to radically treat the diseased aortic segment.
Resumo:
Alterations in nitric oxide synthase (NOS) are implicated in ischemia and ischemia-reperfusion injury. Changes in the 3 NOS isoforms in human skeletal muscle subjected to acute ischemia and reperfusion were studied. Muscle biopsies were taken from patients undergoing total knee replacement. Distribution of the specific NOS isoforms within muscle sections was studied using immunohistochemistry. NOS mRNA levels were measured using real-time reverse transcription-polymerase chain reaction and protein levels studied using Western blotting. NOS activity was also assessed using the citrulline assay. All 3 NOS isoforms were found in muscle sections associated with muscle fibers and microvessels. In muscle subjected to acute ischemia and reperfusion, NOS I/neuronal NOS mRNA and protein were elevated during reperfusion. NOS III/endothelial NOS was also upregulated at the protein level during reperfusion. No changes in NOS II/inducible NOS expression or NOS activity occurred. In conclusion, alterations in NOS I and III (neuronal NOS and endothelial NOS) at different levels occurred after acute ischemia and reperfusion in human skeletal muscle; however, this did not result in increased NOS activity. In the development of therapeutic agents based on manipulation of the NO pathway, targeting the appropriate NOS isoenzymes may be important.
Resumo:
Percutaneous valve replacement for severe aortic stenosis has shown to be an alternative treatment option for non-surgical candidates. We report on the first successful valve in valve procedure in an 80-year-old patient with a severe regurgitation of a degenerated aortic bioprosthesis using the Corevalve Revalving system.
Resumo:
It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.
Resumo:
Implants have changed prosthodontics more than any other innovation in dentistry. Replacement of lost teeth by a fixed or removable prosthesis is considered to be a restitutio ad similem, while implants may provide a feeling of restitutio ad integrum. Implant prosthodontics means restoring function, aesthetics, and providing technology; biology and technology are combined. Placement of implants is a reconstructive, preprosthetic surgical intervention and is therefore different from most goals in oral surgery that consist of tooth extraction, treating infection and removing pathology from soft or hard tissues. Thus, implants are part of the final prosthetic treatment which encompasses functional, aesthetic and social rehabilitation. The patient's needs and functional status determine the goal of prosthetic treatment. Treatment outcomes in implant prosthodontics are survival of implants and prostheses, impact on physiological and psychological status, oral health-related impact on quality of life, and initial and maintenance costs. A variety of prosthetic solutions are available to restore the partially and completely edentulous jaw and more recently specific methods have been developed such as computer guided planning and CAD-CAM technologies. These should allow more uniform quality and passive fit of prostheses, and simultaneously enables processing of biologically well-accepted materials.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
OBJECTIVES: Implementation of an experimental model to compare cartilage MR imaging by means of histological analyses. MATERIAL AND METHODS: MRI was obtained from 4 patients expecting total knee replacement at 1.5 and/or 3T prior surgery. The timeframe between pre-op MRI and knee replacement was within two days. Resected cartilage-bone samples were tagged with Ethi((R))-pins to reproduce the histological cutting course. Pre-operative scanning at 1.5T included following parameters for fast low angle shot (FLASH: TR/TE/FA=33ms/6ms/30 degrees , BW=110kHz, 120mmx120mm FOV, 256x256 matrix, 0.65mm slice-thickness) and double echo steady state (DESS: TR/TE/FA=23.7ms/6.9ms/40 degrees , BW=130kHz, 120x120mm FOV, 256x256 matrix, 0.65mm slice-thickness). At 3T, scan parameters were: FLASH (TR/TE/FA=12.2ms/5.1ms/10 degrees , BW=130kHz, 170x170mm FOV, 320x320, 0.5mm slice-thickness) and DESS (TR/TE/FA=15.6ms/4.5ms/25 degrees , BW=200kHz, 135mmx150mm FOV, 288x320matrix, 0.5mm slice-thickness). Imaging of the specimens was done the same day at 1.5T. MRI (Noyes) and histological (Mankin) score scales were correlated using the paired t-test. Sensitivity and specificity for the detection of different grades of cartilage degeneration were assessed. Inter-reader and intra-reader reliability was determined using Kappa analysis. RESULTS: Low correlation (sensitivity, specificity) was found for both sequences in normal to mild Mankin grades. Only moderate to severe changes were diagnosed with higher significance and specificity. The use of higher field-strengths was advantageous for both protocols with sensitivity values ranging from 13.6% to 93.3% (FLASH) and 20.5% to 96.2% (DESS). Kappa values ranged from 0.488 to 0.944. CONCLUSIONS: Correlating MR images with continuous histological slices was feasible by using three-dimensional imaging, multi-planar-reformat and marker pins. The capability of diagnosing early cartilage changes with high accuracy could not be proven for both FLASH and DESS.
Resumo:
Various treatment options for deep cartilage defects are presently available. The efficacy of bone marrow stimulation with microfracture, of mosaicplasty and of various autologous chondrocyte implantation (ACI) techniques has been subject to numerous studies recently. Magnetic resonance imaging (MRI) has gained a major role in the assessment of cartilage repair. The introduction of high-field MRI to clinical routine makes high resolution and three-dimensional imaging readily available. New quantitative MRI techniques that directly visualize the molecular structure of cartilage may further advance our understanding of cartilage repair. The clinical evaluation of cartilage repair tissue is a complex issue, and MR imaging will become increasingly important both in research and in clinical routine. This article reviews the clinical aspects of microfracture, mosaicplasty, and ACI and reports the recent technical advances that have improved MRI of cartilage. Morphological evaluation methods are recommended for each of the respective techniques. Finally, an overview of T2 mapping and delayed gadolinium-enhanced MR imaging of cartilage in cartilage repair is provided.
Resumo:
Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.
Resumo:
OBJECTIVE: The aim of our study was to correlate global T2 values of microfracture repair tissue (RT) with clinical outcome in the knee joint. METHODS: We assessed 24 patients treated with microfracture in the knee joint. Magnetic resonance (MR) examinations were performed on a 3T MR unit, T2 relaxation times were obtained with a multi-echo spin-echo technique. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. Slices covering the cartilage RT were selected and region of interest analysis was done. An individual T2 index was calculated with global mean T2 of the RT and global mean T2 of normal, hyaline cartilage. The Lysholm score and the International Knee Documentation Committee (IKDC) knee evaluation forms were used for the assessment of clinical outcome. Bivariate correlation analysis and a paired, two tailed t test were used for statistics. RESULTS: Global T2 values of the RT [mean 49.8ms, standards deviation (SD) 7.5] differed significantly (P<0.001) from global T2 values of normal, hyaline cartilage (mean 58.5ms, SD 7.0). The T2 index ranged from 61.3 to 101.5. We found the T2 index to correlate with outcome of the Lysholm score (r(s)=0.641, P<0.001) and the IKDC subjective knee evaluation form (r(s)=0.549, P=0.005), whereas there was no correlation with the IKDC knee form (r(s)=-0.284, P=0.179). CONCLUSION: These findings indicate that T2 mapping is sensitive to assess RT function and provides additional information to morphologic MRI in the monitoring of microfracture.