993 resultados para Kim de Mutsert


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter describes the procedures for determining the reproductive stage of oysters, mytilid mussels, and dreissenid mussels collected for NOAA’s National Status and Trends Mussel Watch Project. Analyses are conducted on paraffin-embedded tissues sectioned at a 5-μm thickness and stained using a pentachrome staining procedure. Each slide is examined microscopically to determine the animal’s sex and stage of gonadal development. A semi-quantitative ranking is assigned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tag release and recapture data of bigeye (Thunnus obesus) and yellowfin tuna (T. albacares) from the Hawaii Tuna Tagging Project (HTTP) were analyzed with a bulk transfer model incorporating size-specific attrition to infer population dynamics and transfer rates between various fishery components. For both species, the transfer rate estimates from the offshore handline fishery areas to the longline fishery area were higher than the estimates of transfer from those same areas into the inshore fishery areas. Natural and fishing mortality rates were estimated over three size classes: yellowfin 20–45, 46–55, and ≥56 cm and bigeye 29–55, 56–70, and ≥71 cm. For both species, the estimates of natural mortality were highest in the smallest size class. For bigeye tuna, the estimates decreased with increasing size and for yellowfin tuna there was a slight increase in the largest size class. In the Cross Seamount fishery, the fishing mortality rate of bigeye tuna was similar for all three size classes and represented roughly 12% of the gross attrition rate (includes fishing and natural mortality and emigration rates). For yellowfin tuna, fishing mortality ranged between 7% and 30%, the highest being in the medium size class. For both species, the overall attrition rate from the entire fishery area was nearly the same. However, in the specific case of the Cross Seamount fishery, the attrition rate for yellowfin tuna was roughly twice that for bigeye. This result indicates that bigeye tuna are more resident at the Seamount than yellowfin tuna, and larger bigeye tunas tend to reside longer than smaller individuals. This may result in larger fish being more vulnerable to capture in the Seamount fishery. The relatively low level of exchange between the Sea-mount and the inshore and longline fisheries suggests that the fishing activity at the Seamount need not be of great management concern for either species. However, given that the current exploitation rates are considered moderate (10–30%), and that Seamount aggregations of yellowfin and bigeye tuna are highly vulnerable to low-cost gear types, it is recommended that further increases in fishing effort for these species be monitored at Cross Seamount.