926 resultados para Kidney Tubules, Collecting
Resumo:
Objectives The effects of longterm ethanol consumption on the levels of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS) and metalloproteinase-2 (MMP-2) were studied in rat kidney. Methods Male Wistar rats were treated with 20% ethanol (v/v) for 6 weeks. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of eNOS and iNOS were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. MMP-2 activity was determined by gelatin zymography. Histopathological changes in kidneys and indices of renal function (creatinine and urea) and tissue injury (mitochondrial respiration) were also investigated. Results Chronic ethanol consumption did not alter malondialdehyde levels in the kidney. Ethanol consumption induced a significant increase in renal nitrite and nitrate levels. Treatment with ethanol increased mRNA expression of both eNOS and iNOS. Immunohistochemical assays showed increased immunostaining for eNOS and iNOS after treatment with ethanol. Kidneys from ethanol-treated rats showed increased activity of MMP-2. Histopathological investigation of kidneys from ethanol-treated animals revealed tubular necrosis. Indices of renal function and tissue injury were not altered in ethanol-treated rats. Conclusions Ethanol consumption increased renal metalloproteinase expression/activity, which was accompanied by histopathological changes in the kidney and elevated NO generation. Since iNOS-derived NO and MMPs contribute to progressive renal injury, the increased levels of NO and MMPs observed in ethanol-treated rats might contribute to progressive renal damage.
Resumo:
A 39-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) presented with acromegaly and a pituitary macroadenoma. There was a family history of this renal disorder. She had undergone surgery for pituitary adenoma 6 years prior. Physical examination disclosed bitemporal hemianopsia and elevation of both basal growth hormone (GH) 106 ng/mL (normal 0-5) and insulin-like growth factor (IGF-1) 811 ng/mL (normal 48-255) blood levels. A magnetic resonance imaging scan disclosed a 3.0 cm sellar and suprasellar mass with both optic chiasm compression and left cavernous sinus invasion. Pathologic, cytogenetic, molecular and in silico analysis was undertaken. Histologic, immunohistochemical and ultrastructural studies of the lesion disclosed a sparsely granulated somatotroph adenoma. Standard chromosome analysis on the blood sample showed no abnormality. Sequence analysis of the coding regions of PKD1 and PKD2 employing DNA from both peripheral leukocytes and the tumor revealed the most common PKD1 mutation, 5014_5015delAG. Analysis of the entire SSTR5 gene disclosed the variant c.142C > A (p.L48M, rs4988483) in the heterozygous state in both blood and tumor, while no pathogenic mutations were noted in the MEN1, AIP, p27Kip1 and SSTR2 genes. To our knowledge, this is the fourth reported case of a GH-producing pituitary adenoma associated with ADPKD, but the first subjected to extensive morphological, ultrastructural, cytogenetic and molecular studies. The physical proximity of the PKD1 and SSTR5 genes on chromosome 16 suggests a causal relationship between ADPKD and somatotroph adenoma.
Resumo:
The increase in solid organ transplantations may soon create a rise in the occurrence of endemic fungal diseases, such as paracoccidioidomycosis, due to the lack of rigorous screening of donors from endemic areas. Here we present the first case of an immunocompetent and asymptomatic kidney donor who had Paracoccidioides brasiliensis infected-adrenal tissue but no glandular dysfunction.
Resumo:
Food intake and nutritional status modify the physiological responses of the immune system to illness and infection and regulate the development of chronic inflammatory processes, such as kidney disease. Adipose tissue secretes immune-related proteins called adipokines that have pleiotropic effects on both the immune and neuroendocrine systems, linking metabolism and immune physiology. Leptin, an adipose tissue-derived adipokine, displays a variety of immune and physiological functions, and participates in several immune responses. Here, we review the current literature on the role of leptin in kidney diseases, linking adipose tissue and the immune system with kidney-related disorders. The modulation of this adipose hormone may have a major impact on the treatment of several immune- and metabolic-related kidney diseases.
Resumo:
Abstract Background Sequential physicochemical alterations in blood and urine in the course of acute kidney injury (AKI) development have not been previously described. We aimed to describe these alterations in parallel to traditional renal and acid–base parameters. Methods One hundred and sixty eight consecutive critically ill patients with no previous kidney disease, who had an indwelling urinary catheter at ICU admission and who remained with the catheter for at least two days without dialysis were included. A sample of blood and spot urine were collected simultaneously, once daily, until catheter removal or dialysis requirement. Traditional acid–base and renal parameters were sequentially evaluated in parallel to blood and urinary physicochemical parameters. Patients were classified during this period as having or not AKI and, for patients with AKI, duration (transient or persistent) and severity (creatinine-based AKIN stage) were evaluated. Results One hundred and thirteen patients (67.3%) had AKI: 92 at ICU admission and 21 during the observation period. AKI development was characterized in blood by increased values of phosphate and unmeasured anions (SIG), decreased albumin, and in urine by decreased values of sodium (NaU), chloride (ClU) as well as high urinary strong ion difference (SIDu). These alterations began to occur before AKI diagnosis, and they reverted in transient AKI but remained in persistent AKI. NaU, ClU and albumin decreased, and phosphate, SIG and SIDu increased with AKI severity progression. NaU and ClU values increased again when AKIN stage 3 was reached. Conclusions Simultaneous physicochemical analysis of blood and urine revealed standardized alterations that characterize AKI development in critically ill patients. These alterations paralleled AKI duration and severity. Future studies should consider including sequential evaluation of urine biochemistry as part of the armamentarium for AKI diagnosis and management.
Resumo:
A mucinous tubular and spindle cell carcinoma (MTSCC) is a rare and recently described kidney neoplasm with distal nephron differentiation. It can affect patients of all ages and is more prevalent among women. In this case report, we present a 50-year-old woman who had a renal mass, which was accidently discovered during an investigation for chronic anemia. The final diagnosis of MTSCC was made after the lesion was removed and a pathology work-up was performed. The clinical, pathological and imaging findings of this rare neoplasm are described in this report.
Resumo:
Abstract Background The aim of this study was to determine the effects of creatine supplementation on kidney function in resistance-trained individuals ingesting a high-protein diet. Methods A randomized, double-blind, placebo-controlled trial was performed. The participants were randomly allocated to receive either creatine (20 g/d for 5 d followed by 5 g/d throughout the trial) or placebo for 12 weeks. All of the participants were engaged in resistance training and consumed a high-protein diet (i.e., ≥ 1.2 g/Kg/d). Subjects were assessed at baseline (Pre) and after 12 weeks (Post). Glomerular filtration rate was measured by 51Cr-EDTA clearance. Additionally, blood samples and a 24-h urine collection were obtained for other kidney function assessments. Results No significant differences were observed for 51Cr-EDTA clearance throughout the trial (Creatine: Pre 101.42 ± 13.11, Post 108.78 ± 14.41 mL/min/1.73m2; Placebo: Pre 103.29 ± 17.64, Post 106.68 ± 16.05 mL/min/1.73m2; group x time interaction: F = 0.21, p = 0.64). Creatinine clearance, serum and urinary urea, electrolytes, proteinuria, and albuminuria remained virtually unchanged. Conclusions A 12-week creatine supplementation protocol did not affect kidney function in resistance-trained healthy individuals consuming a high-protein diet; thus reinforcing the safety of this dietary supplement. Trial registration ClinicalTrials.gov NCT01817673
Resumo:
PURPOSE: This study has described and analysed the functional independence of the patients served in the haemodialysis services of a countryside town in the State of São Paulo, Brazil, using the Functional Independence Measure (FIM). METHOD: The population considered was that of 214 patients being treated with haemodialysis, assessed in 2011, by means of a social, demographic and clinical report, a Mini-Mental State Examination (MMSE) and also the FIM. RESULTS: The mean age of the population under study was 58.01 years, while the mean FIM point score was 118.38 points, showing a level of complete or modified independence within this population. Even though the level of dependence found has been low, this can be highlighted, within the locomotion domain, in the activity of going up and down stairs (10.28%). Age, complications arising from haemodialysis, and comorbidities show a negative correlation with FIM. CONCLUSION: Awareness of the level of functional independence of the patients being subjected to treatment with haemodialysis is essential in order to back up intervention for the improvement of nursing assistance provided to this population.
Resumo:
Abstract: Background: The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure–activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs – including BPP-10c – are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results: The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without affecting BTB permeability and the distribution of claudin-1 in the seminiferous epithelium. Interestingly, no morphological or morphometric alterations were observed in animals treated with captopril. Conclusions: The major finding of the present study was that BPP-10c, and not captopril, modifies spermatogenesis by causing hyperplasia of round spermatids in stages I, V, and VII/VIII of the spermatogenic cycle.
Resumo:
AIMS: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene. MAIN METHODS: Hepatocyte nuclear factors 1α and 4α (HNF-1α and HNF-4α), forkhead box A2 (FOXA2), sterol regulatory element binding protein-1c (SREBP-1c) and the CCAAT-enhancer-binding protein (C/EBPβ) mRNA expression (RT-PCR) and binding activity into the Slc2a2 promoter (electrophoretic mobility assay) were analyzed in the liver and kidney of diabetic and 6-day insulin-treated diabetic rats. KEY FINDINGS: Slc2a2/GLUT2 expression increased by more than 50% (P<0.001) in the liver and kidney of diabetic rats, and 6-day insulin treatment restores these values to those observed in non-diabetic animals. Similarly, the mRNA expression and the binding activity of HNF-1α, HNF-4α and FOXA2 increased by 50 to 100% (P<0.05 to P<0.001), also returning to values of non-diabetic rats after insulin treatment. Neither the Srebf1 and Cebpb mRNA expression, nor the SREBP-1c and C/EBP-β binding activity was altered in diabetic rats. SIGNIFICANCE: HNF-1α, HNF-4α and FOXA2 transcriptional factors are involved in diabetes-induced overexpression of Slc2a2 gene in the liver and kidney. These data point out that these transcriptional factors are important targets to control GLUT2 expression in these tissues, which can contribute to glycemic homeostasis in diabetes.
Resumo:
Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (ΔpHS) caused by exposing the same oocyte to 5 % CO2/33 mM HCO3 − (an increase) or 0.5 mM NH3/NH4 + (a decrease). Subtracting the respective values for day-matched, H2O-injected control oocytes yielded channel-specific values (*). (ΔpH∗S)CO2 and (−ΔpH∗S)NH3 were each significantly >0 for all channels, indicating that RhBG and RhCG—like RhAG—can carry CO2 and NH3. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH3 transport. However, surface biotinylation experiments indicate the mutants RhBGD178N and RhCGD177N have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG—like RhAG—have significant CO2 permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH3 permeability. However, as evidenced by (ΔpH∗S)CO2/(−ΔpH∗S)NH3 values, we could not distinguish among the CO2/NH3 permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH3 but also CO2 across the membranes of CD cells.
Resumo:
Acute kidney injury (AKI) is classically described as a rapid loss of kidney function. AKI affects more than 15% of all hospital admissions and is associated with elevated mortality rates. Although many advances have occurred, intermittent or continuous renal replacement therapies are still considered the best options for reversing mild and severe AKI syndrome. For this reason, it is essential that innovative and effective therapies, without side effects and complications, be developed to treat AKI and the end-stages of renal disease. Mesenchymal stem cell (MSC) based therapies have numerous advantages in helping to repair inflamed and damaged tissues and are being considered as a new alternative for treating kidney injuries. Numerous experimental models have shown that MSCs can act via differentiation-independent mechanisms to help renal recovery. Essentially, MSCs can secrete a pool of cytokines, growth factors and chemokines, express enzymes, interact via cell-to-cell contacts and release bioagents such as microvesicles to orchestrate renal protection. In this review, we propose seven distinct properties of MSCs which explain how renoprotection may be conferred: 1) anti-inflammatory; 2) pro-angiogenic; 3) stimulation of endogenous progenitor cells; 4) anti-apoptotic; 5) anti-fibrotic; 6) anti-oxidant; and 7) promotion of cellular reprogramming. In this context, these mechanisms, either individually or synergically, could induce renal protection and functional recovery. This review summarises the most important effects and benefits associated with MSC-based therapies in experimental renal disease models and attempts to clarify the mechanisms behind the MSC-related renoprotection. MSCs may prove to be an effective, innovative and affordable treatment for moderate and severe AKI. However, more studies need to be performed to provide a more comprehensive global understanding of MSC-related therapies and to ensure their safety for future clinical applications.
Resumo:
The acute direct action of angiotensin-(1-7) [ANG-(1-7)] on bicarbonate reabsorption (JHCO(3)(-)) was evaluated by stationary microperfusions on in vivo middle proximal tubules in rats using H ion-sensitive microelectrodes. The control JHCO(3)(-) is 2.82 ± 0.078 nmol·cm(-2)·s(-1) (50). ANG-(1-7) (10(-12) or 10(-9) M) in luminally perfused tubules decreases JHCO(3)(-) (36 or 60%, respectively), but ANG-(1-7) (10(-6) M) increases it (80%). A779 increases JHCO(3)(-) (30%) and prevents both the inhibitory and the stimulatory effects of ANG-(1-7) on it. S3226 decreases JHCO(3)(-) (45%) and changes the stimulatory effect of ANG-(1-7) to an inhibitory effect (30%) but does not affect the inhibitory effect of ANG-(1-7). Our results indicate that in the basal condition endogenous ANG-(1-7) inhibits JHCO(3)(-) and that the biphasic dose-dependent effect of ANG-(1-7) on JHCO(3)(-) is mediated by the Mas receptors via the Na(+)/H(+) exchanger 3 (NHE3). The control value of intracellular Ca(2+) concentration ([Ca(2+)](i)), as monitored using fura-2 AM, is 101 ± 2 nM (6), and ANG-(1-7) (10(-12), 10(-9), or 10(-6)M) transiently (3 min) increases it (by 151, 102, or 52%, respectively). A779 increases the [Ca(2+)](i) (25%) but impairs the stimulatory effect of all doses of ANG-(1-7) on it. The use of BAPTA or thapsigargin suggests a correlation between the ANG-(1-7) dose-dependent effects on [Ca(2+)](i) and JHCO(3)(-). Therefore, the interaction of the opposing dose-dependent effects of ANG II and ANG-(1-7) on [Ca(2+)](i) and JHCO(3)(-) may represent an physiological regulatory mechanism of extracellular volume and/or pH changes. However, whether [Ca(2+)](i) modification is an important direct mechanism for NHE3 activation by these peptides or is a side effect of other signaling pathways will require additional studies.
Resumo:
NGAL è considerato dalla comunità scientifica un marcatore di danno renale sia di tipo ischemico che tossico. In questo studio è stato effettuato un follow-up ad un mese di una popolazione sottoposta a trapianto di rene, sono state analizzate la fase post-operatoria e l’immediato periodo di stabilizzazione del trapianto. E' stato osservato l’andamento di NGAL in relazione alle principali variabili incidenti.