994 resultados para Kasekamp, Andres
Resumo:
http://www.ncbi.nlm.nih.gov/pubmed/20486623
Resumo:
Intra-arterial (IA) injection represents an experimental avenue for minimally invasive delivery of stem cells to the injured brain. It has however been reported that IA injection of stem cells carries the risk of reduction in cerebral blood flow (CBF) and microstrokes. Here we evaluate the safety of IA neural progenitor cell (NPC) delivery to the brain. Cerebral blood flow of rats was monitored during IA injection of single cell suspensions of NPCs after stroke. Animals received 1 × 10(6) NPCs either injected via a microneedle (microneedle group) into the patent common carotid artery (CCA) or via a catheter into the proximally ligated CCA (catheter group). Controls included saline-only injections and cell injections into non-stroked sham animals. Cerebral blood flow in the microneedle group remained at baseline, whereas in the catheter group a persistent (15 minutes) decrease to 78% of baseline occurred (P<0.001). In non-stroked controls, NPCs injected via the catheter method resulted in higher levels of Iba-1-positive inflammatory cells (P=0.003), higher numbers of degenerating neurons as seen in Fluoro-Jade C staining (P<0.0001) and ischemic changes on diffusion weighted imaging. With an appropriate technique, reduction in CBF and microstrokes do not occur with IA transplantation of NPCs.
Resumo:
The authors describe a modification of the medial branch kryorhizotomy technique for the treatment of lumbar facet joint syndrome using a fluoroscopy-based laser-guided method. A total of 32 patients suffering from lumbar facet joint syndrome confirmed by positive medial nerve block underwent conventional or laser-guided kryorhizotomy. The procedural time (20.6 +/- 1.0 vs 16.3 +/- 0.9 minutes, p < 0.01), fluoroscopy time (54.1 +/- 3.5 vs 28.2 +/- 2.4 seconds, p < 0.01), radiation dose (407.5 +/- 32.0 vs 224.1 +/- 20.3 cGy/cm(2), p < 0.01), and patient discomfort during the procedure (7.1 +/- 0.4 vs 5.2 +/- 0.4 on the visual analog scale, p < 0.01) were significantly reduced in the laser-guided group. There was a tendency for a better positioning accuracy when the laser guidance method was used (3.0 +/- 0.3 vs 2.2 +/- 0.3 mm of deviation from the target points, p > 0.05). No difference in the outcome was observed between the 2 groups of patients (visual analog scale score 3.5 +/- 0.2 vs 3.3 +/- 0.3, p > 0.05). This improved minimally invasive surgical technique offers advantages to conventional fluoroscopy-based kryorhizotomy.
Resumo:
Intravascular transplantation of neural stem cells represents a minimally invasive therapeutic approach for the treatment of central nervous system diseases. The cellular biodistribution after intravascular injection needs to be analyzed to determine the ideal delivery modality. We studied the biodistribution and efficiency of targeted central nervous system delivery comparing intravenous and intra-arterial (IA) administration of neural stem cells after brain ischemia.