925 resultados para KENNEDY PATHWAY
Resumo:
BACKGROUND: Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), produced by endotoxin-activated Kupffer cells, play a key role in the pathogenesis of alcoholic liver cirrhosis (ALC). Alleles TNFA -238A, IL1B -31T and variant IL1RN*2 of repeat polymorphism in the gene encoding the IL-1 receptor antagonist increase production of TNF-alpha and IL-1beta, respectively. Alleles CD14 -159T, TLR4 c.896G and TLR4 c.1196T modify activation of Kupffer cells by endotoxin. We confirmed the published associations between these common variants and genetic predisposition to ALC by means of a large case-control association study conducted on two Central European populations. METHODS: The study population comprised a Czech sample of 198 ALC patients and 370 controls (MONICA project), and a German sample of 173 ALC patients and 331 controls (KORA-Augsburg), and 109 heavy drinkers without liver disease. RESULTS: Single locus analysis revealed no significant difference between patients and controls in all tested loci. Diplotype [IL1RN 2/ 2; IL1B -31T+] was associated with increased risk of ALC in the pilot study, but not in the validation samples. CONCLUSIONS: Although cytokine mediated immune reactions play a role in the pathogenesis of ALC, hereditary susceptibility caused by variants in the corresponding genes is low in Central European populations.
Resumo:
PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.
Resumo:
Dendritic cells (DCs) can release hundreds of membrane vesicles, called exovesicles, which are able to activate resting DCs and distribute antigen. Here, we examined the role of mature DC-derived exovesicles in innate and adaptive immunity, in particular their capacity to activate epithelial cells. Our analysis of exovesicle contents showed that exovesicles contain major histocompatibility complex-II, CD40, and CD83 molecules in addition to tumor necrosis factor (TNF) receptors, TNFRI and TNFRII, and are important carriers of TNF-alpha. These exovesicles are rapidly internalized by epithelial cells, inducing the release of cytokines and chemokines, but do not transfer an alloantigen-presenting capacity to epithelial cells. Part of this activation appears to involve the TNF-alpha-mediated pathway, highlighting the key role of DC-derived exovesicles, not only in adaptive immunity, but also in innate immunity by triggering innate immune responses and activating neighboring epithelial cells to release cytokines and chemokines, thereby amplifying the magnitude of the innate immune response.
Resumo:
A small subset of familial pancreatic endocrine tumors (PET) arises in patients with von Hippel-Lindau syndrome and these tumors may have an adverse outcome compared to other familial PET. Sporadic PET rarely harbors somatic VHL mutations, but the chromosomal location of the VHL gene is frequently deleted in sporadic PET. A subset of sporadic PET shows active hypoxia signals on mRNA and protein level. To identify the frequency of functionally relevant VHL inactivation in sporadic PET and to examine a possible prognostic significance we correlated epigenetic and genetic VHL alterations with hypoxia signals. VHL mutations were absent in all 37 PETs examined. In 2 out of 35 informative PET (6%) methylation of the VHL promoter region was detected and VHL deletion by fluorescence in situ hybridization was found in 14 out of 79 PET (18%). Hypoxia inducible factor 1alpha (HIF1-alpha), carbonic anhydrase 9 (CA-9), and glucose transporter 1 (GLUT-1) protein was expressed in 19, 27, and 30% of the 152 PETs examined. Protein expression of the HIF1-alpha downstream target CA-9 correlated significantly with the expression of CA-9 RNA (P<0.001), VHL RNA (P<0.05), and VHL deletion (P<0.001) as well as with HIF1-alpha (P<0.005) and GLUT-1 immunohistochemistry (P<0.001). These PET with VHL alterations and signs of hypoxia signalling were characterized by a significantly shortened disease-free survival. We conclude that VHL gene impairment by promoter methylation and VHL deletion in nearly 25% of PET leads to the activation of the HIF-pathway. Our data suggest that VHL inactivation and consecutive hypoxia signals may be a mechanism for the development of sporadic PET with an adverse outcome.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.
Resumo:
CD4(+) T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)-transgenic (tg) CD4(+) T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3Kdelta(D910A/D910A) or PI3Kgamma-deficient TCR-tg CD4(+) T cells showed similar responsiveness to CCL21 costimulation as control CD4(+) T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4(+) T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca(2+) signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.
Resumo:
Metazoan replication-dependent histone mRNAs do not have a poly(A) tail but end instead in a conserved stem-loop structure. Efficient translation of these mRNAs is dependent on the stem-loop binding protein (SLBP). Here we explore the mechanism by which SLBP stimulates translation in vertebrate cells, using the tethered function assay and analyzing protein-protein interactions. We show for the first time that translational stimulation by SLBP increases during oocyte maturation and that SLBP stimulates translation at the level of initiation. We demonstrate that SLBP can interact directly with subunit h of eIF3 and with Paip1; however, neither of these interactions is sufficient to mediate its effects on translation. We find that Xenopus SLBP1 functions primarily at an early stage in the cap-dependent initiation pathway, targeting small ribosomal subunit recruitment. Analysis of IRES-driven translation in Xenopus oocytes suggests that SLBP activity requires eIF4E. We propose a model in which a novel factor contacts eIF4E bound to the 5' cap and SLBP bound to the 3' end simultaneously, mediating formation of an alternative end-to-end complex.
Resumo:
The Bloom protein (BLM) and Topoisomerase IIIalpha are found in association with proteins of the Fanconi anemia (FA) pathway, a disorder manifesting increased cellular sensitivity to DNA crosslinking agents. In order to determine if the association reflects a functional interaction for the maintenance of genome stability, we have analyzed the effects of siRNA-mediated depletion of the proteins in human cells. Depletion of Topoisomerase IIIalpha or BLM leads to increased radial formation, as is seen in FA. BLM and Topoisomerase IIIalpha are epistatic to the FA pathway for suppression of radial formation in response to DNA interstrand crosslinks since depletion of either of them in FA cells does not increase radial formation. Depletion of Topoisomerase IIIalpha or BLM also causes an increase in sister chromatid exchanges, as is seen in Bloom syndrome cells. Human Fanconi anemia cells, however, do not demonstrate increased sister chromatid exchanges, separating this response from radial formation. Primary cell lines from mice defective in both Blm and Fancd2 have the same interstrand crosslink-induced genome instability as cells from mice deficient in the Fancd2 protein alone. These observations demonstrate that the association of BLM and Topoisomerase IIIalpha with Fanconi proteins is a functional one, delineating a BLM-Topoisomerase IIIalpha-Fanconi pathway that is critical for suppression of chromosome radial formation.
Resumo:
It has been known for over a hundred years that microorganisms can produce volatile arsenic (As) species, termed “arsines”. However, this topic has received relatively little attention compared to As behaviour in soils and biotransformation through the trophic level in the marine and terrestrial environment. We believe this is due to long-standing misconceptions regarding volatile As stability and transport as well as an absence, until recently, of appropriate sampling methods. First and foremost, an attempt is made to unify arsines' designations, notations and formulas, taking into account all the different terms used in the literature. Then, the stability of As volatile species is discussed and new analytical developments are explored. Further, the special cases of diffuse low-level emissions (e.g. soil and sediment biovolatilisation), and point sources with high-level emissions (geothermal environments, landfills, and natural gas) are comprehensively reviewed. In each case, future possible areas of research and unknown mechanisms are identified and their importance towards the global As biogeochemical cycle is explored. This review gathers new information regarding mechanisms, stability, transport and sampling of the very elusive arsines and shows that more research should be conducted on this important process.
Resumo:
Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.
Resumo:
BACKGROUND Natural IgM containing anti-Gal antibodies initiates classic pathway complement activation in xenotransplantation. However, in ischemia-reperfusion injury, IgM also induces lectin pathway activation. The present study was therefore focused on lectin pathway as well as interaction of IgM and mannose-binding lectin (MBL) in pig-to-human xenotransplantation models. METHODS Activation of the different complement pathways was assessed by cell enzyme-linked immunosorbent assay using human serum on wild-type (WT) and α-galactosyl transferase knockout (GalTKO)/hCD46-transgenic porcine aortic endothelial cells (PAEC). Colocalization of MBL/MASP2 with IgM, C3b/c, C4b/c, and C6 was investigated by immunofluorescence in vitro on PAEC and ex vivo in pig leg xenoperfusion with human blood. Influence of IgM on MBL binding to PAEC was tested using IgM depleted/repleted and anti-Gal immunoabsorbed serum. RESULTS Activation of all the three complement pathways was observed in vitro as indicated by IgM, C1q, MBL, and factor Bb deposition on WT PAEC. MBL deposition colocalized with MASP2 (Manders' coefficient [3D] r=0.93), C3b/c (r=0.84), C4b/c (r=0.86), and C6 (r=0.80). IgM colocalized with MBL (r=0.87) and MASP2 (r=0.83). Human IgM led to dose-dependently increased deposition of MBL, C3b/c, and C6 on WT PAEC. Colocalization of MBL with IgM (Pearson's coefficient [2D] rp=0.88), C3b/c (rp=0.82), C4b/c (rp=0.63), and C6 (rp=0.81) was also seen in ex vivo xenoperfusion. Significantly reduced MBL deposition and complement activation was observed on GalTKO/hCD46-PAEC. CONCLUSION Colocalization of MBL/MASP2 with IgM and complement suggests that the lectin pathway is activated by human anti-Gal IgM and may play a pathophysiologic role in pig-to-human xenotransplantation.
Resumo:
UNLABELLED The abnormal development of the tricuspid valve in patients with Ebstein's anomaly results in several activation abnormalities including delayed intraatrial conduction, right bundle branch block (RBBB), and ventricular preexcitation. The aim of the present study was to define the ECG characteristics before and after ablation of an accessory A-V pathway (AP) in patients with Ebstein's anomaly. METHODS A series of 226 consecutive patients with Ebstein's anomaly was studied. Sixty-four patients (28%) had documented tachycardia. Thirty-three patients with recurrent tachycardia were found to have a single right-sided AP that was successfully ablated (study group). Thirty patients without tachycardia served as the control group. RESULTS Only 21 of 33 patients (62%) had a typical ECG pattern of preexcitation. In addition, none of the patients had an ECG pattern of RBBB during sinus rhythm. In contrast, 28 of 30 (93%) patients in the control group had RBBB (P < 0.001). Radiofrequency catheter ablation resulted in appearance of RBBB in 31 of 33 (94%) patients. The absence of RBBB in patients with Ebstein's anomaly and recurrent tachycardia had a 98% sensitivity and 92% specificity for the diagnosis of an AP. The positive predictive value was 91% (0.77, 0.97 CI 95%) and the negative predictive value was 98% (0.85, 0.99 CI 95%). CONCLUSION One-third of patients with Ebstein's anomaly and symptomatic tachyarrhythmias have minimal or absent ECG features of ventricular preexcitation. In these patients, the absence of RBBB pattern is a strong predictor of an AP.
Resumo:
Studies analyzing the diagnostic value of 12-lead electrocardiographic criteria differentiating slow-fast atrioventricular nodal reentrant tachycardia (AVNRT) from atrioventricular reentrant tachycardia (AVRT) due to concealed accessory pathway have shown inconsistent results. In 97 patients (50 with AVNRT, 47 with AVRT) 12-lead electrocardiograms (ECGs) were recorded during sinus rhythm and tachycardia (QRS <120 ms). The ECGs were blinded for diagnosis and patient and analyzed independently by 2 electrophysiologists. The studied criteria differentiating AVNRT from AVRT included pseudo-r'/S, the presence of a retrograde P wave, RP interval, ST-segment depression >/=2 mm with the number and location of the affected leads, QRS amplitude, and cycle length alternans.