950 resultados para K ras protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in Tg737 cause a wide spectrum of phenotypes, including random left-right axis specification, polycystic kidney disease, liver and pancreatic defects, hydrocephalus, and skeletal patterning abnormalities. To further assess the biological function of Tg737 and its role in the mutant pathology, we identified the cell population expressing Tg737 and determined the subcellular localization of its protein product called Polaris. Tg737 expression is associated with cells possessing either motile or immotile cilia and sperm. Similarly, Polaris concentrated just below the apical membrane in the region of the basal bodies and within the cilia or flagellar axoneme. The data suggest that Polaris functions in a ciliogenic pathway or in cilia maintenance, a role supported by the loss of cilia on the ependymal cell layer in ventricles of Tg737orpk brains and by the lack of node cilia in Tg737Δ2-3βGal mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD4+ T lymphocyte clones, generated from mice immunized with the methylcholanthrene-induced fibrosarcoma Meth A (H-2d), are restricted by I-Ed and recognize a unique antigen on Meth A. The antigen has been purified and characterized as the ribosomal protein L11. The antigenic epitope is contained within the sequence EYELRKHNFSDTG and is generated by substitution of Asn by His (italic) caused by a single point mutation. The tumor contains the wild-type and the mutated alleles. Immunization of BALB/cJ mice with the mutated epitope but not with the wild-type epitope protects mice against a subsequent challenge with the Meth A sarcoma. Adoptive transfer of CD4+ clones into BALB/c mice renders the mice specifically resistant to Meth A sarcoma. The mutated L11 epitope is thus shown to be an immunoprotective epitope in vivo by several criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lethal factor is a protease, one component of Bacillus anthracis exotoxin, which cleaves many of the mitogen-activated protein kinase kinases (MEKs). Given the importance of MEK signaling in tumorigenesis, we assessed the effects of anthrax lethal toxin (LeTx) on tumor cells. LeTx was very effective in inhibiting mitogen-activated protein kinase activation in V12 H-ras-transformed NIH 3T3 cells. In vitro, treatment of transformed cells with LeTx caused them to revert to a nontransformed morphology, and inhibited their abilities to form colonies in soft agar and to invade Matrigel without markedly affecting cell proliferation. In vivo, LeTx inhibited growth of ras-transformed cells implanted in athymic nude mice (in some cases causing tumor regression) at concentrations that caused no apparent animal toxicity. Unexpectedly, LeTx also greatly decreased tumor neovascularization. These results demonstrate that LeTx potently inhibits ras-mediated tumor growth and is a potential antitumor therapeutic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral changes in the photocycle of the photoactive yellow protein (PYP) are investigated by using ab initio multiconfigurational second-order perturbation theory at the available structures experimentally determined. Using the dark ground-state crystal structure [Genick, U. K., Soltis, S. M., Kuhn, P., Canestrelli, I. L. & Getzoff, E. D. (1998) Nature (London) 392, 206–209], the ππ* transition to the lowest excited state is related to the typical blue-light absorption observed at 446 nm. The different nature of the second excited state (nπ*) is consistent with the alternative route detected at 395-nm excitation. The results suggest the low-temperature photoproduct PYPHL as the most plausible candidate for the assignment of the cryogenically trapped early intermediate (Genick et al.). We cannot establish, however, a successful correspondence between the theoretical spectrum for the nanosecond time-resolved x-ray structure [Perman, B., Šrajer, V., Ren, Z., Teng, T., Pradervand, C., et al. (1998) Science 279, 1946–1950] and any of the spectroscopic photoproducts known up to date. It is fully confirmed that the colorless light-activated intermediate recorded by millisecond time-resolved crystallography [Genick, U. K., Borgstahl, G. E. O., Ng, K., Ren, Z., Pradervand, C., et al. (1997) Science 275, 1471–1475] is protonated, nicely matching the spectroscopic features of the photoproduct PYPM. The overall contribution demonstrates that a combined analysis of high-level theoretical results and experimental data can be of great value to perform assignments of detected intermediates in a photocycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poly(A)-binding protein (PABP) recognizes the 3′ mRNA poly(A) tail and plays an essential role in eukaryotic translation initiation and mRNA stabilization/degradation. PABP is a modular protein, with four N-terminal RNA-binding domains and an extensive C terminus. The C-terminal region of PABP is essential for normal growth in yeast and has been implicated in mediating PABP homo-oligomerization and proteinprotein interactions. A small, proteolytically stable, highly conserved domain has been identified within this C-terminal segment. Remarkably, this domain is also present in the hyperplastic discs protein (HYD) family of ubiquitin ligases. To better understand the function of this conserved region, an x-ray structure of the PABP-like segment of the human HYD protein has been determined at 1.04-Å resolution. The conserved domain adopts a novel fold resembling a right-handed supercoil of four α-helices. Sequence profile searches and comparative protein structure modeling identified a small ORF from the Arabidopsis thaliana genome that encodes a structurally similar but distantly related PABP/HYD domain. Phylogenetic analysis of the experimentally determined (HYD) and homology modeled (PABP) protein surfaces revealed a conserved feature that may be responsible for binding to a PABP interacting protein, Paip1, and other shared interaction partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jaagsiekte sheep retrovirus (JSRV) can induce rapid, multifocal lung cancer, but JSRV is a simple retrovirus having no known oncogenes. Here we show that the envelope (env) gene of JSRV has the unusual property that it can induce transformation in rat fibroblasts, and thus is likely to be responsible for oncogenesis in animals. Retrovirus entry into cells is mediated by Env interaction with particular cell-surface receptors, and we have used phenotypic screening of radiation hybrid cell lines to identify the candidate lung cancer tumor suppressor HYAL2/LUCA2 as the receptor for JSRV. HYAL2 was previously described as a lysosomal hyaluronidase, but we show that HYAL2 is actually a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein. Furthermore, we could not detect hyaluronidase activity associated with or secreted by cells expressing HYAL2, whereas we could easily detect such activity from cells expressing the related serum hyaluronidase HYAL1. Although the function of HYAL2 is currently unknown, other GPI-anchored proteins are involved in signal transduction, and some mediate mitogenic responses, suggesting a potential role of HYAL2 in JSRV Env-mediated oncogenesis. Lung cancer induced by JSRV closely resembles human bronchiolo-alveolar carcinoma, a disease that is increasing in frequency and now accounts for ≈25% of all lung cancer. The finding that JSRV env is oncogenic and the identification of HYAL2 as the JSRV receptor provide tools for further investigation of the mechanism of JSRV oncogenesis and its relationship to human bronchiolo-alveolar carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the dynamic properties of the switch I region of the GTP-binding protein Ras by using mutants of Thr-35, an invariant residue necessary for the switch function. Here we show that these mutants, previously used as partial loss-of-function mutations in cell-based assays, have a reduced affinity to Ras effector proteins without Thr-35 being involved in any interaction. The structure of Ras(T35S)⋅GppNHp was determined by x-ray crystallography. Whereas the overall structure is very similar to wildtype, residues from switch I are completely invisible, indicating that the effector loop region is highly mobile. 31P-NMR data had indicated an equilibrium between two rapidly interconverting conformations, one of which (state 2) corresponds to the structure found in the complex with the effectors. 31P-NMR spectra of Ras mutants (T35S) and (T35A) in the GppNHp form show that the equilibrium is shifted such that they occur predominantly in the nonbinding conformation (state 1). On addition of Ras effectors, Ras(T35S) but not Ras(T35A) shift to positions corresponding to the binding conformation. The structural data were correlated with kinetic experiments that show two-step binding reaction of wild-type and (T35S)Ras with effectors requires the existence of a rate-limiting isomerization step, which is not observed with T35A. The results indicate that minor changes in the switch region, such as removing the side chain methyl group of Thr-35, drastically affect dynamic behavior and, in turn, interaction with effectors. The dynamics of the switch I region appear to be responsible for the conservation of this threonine residue in GTP-binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome c oxidase is a membrane-bound enzyme that catalyzes the four-electron reduction of oxygen to water. This highly exergonic reaction drives proton pumping across the membrane. One of the key questions associated with the function of cytochrome c oxidase is how the transfer of electrons and protons is coupled and how proton transfer is controlled by the enzyme. In this study we focus on the function of one of the proton transfer pathways of the R. sphaeroides enzyme, the so-called K-proton transfer pathway (containing a highly conserved Lys(I-362) residue), leading from the protein surface to the catalytic site. We have investigated the kinetics of the reaction of the reduced enzyme with oxygen in mutants of the enzyme in which a residue [Ser(I-299)] near the entry point of the pathway was modified with the use of site-directed mutagenesis. The results show that during the initial steps of oxygen reduction, electron transfer to the catalytic site (to form the “peroxy” state, Pr) requires charge compensation through the proton pathway, but no proton uptake from the bulk solution. The charge compensation is proposed to involve a movement of the K(I-362) side chain toward the binuclear center. Thus, in contrast to what has been assumed previously, the results indicate that the K-pathway is used during oxygen reduction and that K(I-362) is charged at pH ≈ 7.5. The movement of the Lys is proposed to regulate proton transfer by “shutting off” the protonic connectivity through the K-pathway after initiation of the O2 reduction chemistry. This “shutoff” prevents a short-circuit of the proton-pumping machinery of the enzyme during the subsequent reaction steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39–50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3′ kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34–57%, and association of p85α with both IRS proteins was reduced by 39–52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that an E146D site-directed variant of the Azotobacter vinelandii iron protein (Fe protein) is specifically defective in its ability to participate in iron-molybdenum cofactor (FeMoco) insertion. Molybdenum-iron protein (MoFe protein) from the strain expressing the E146D Fe protein is partially (≈45%) FeMoco deficient. The “free” FeMoco that is not inserted accumulates in the cell. We were able to insert this “free” FeMoco into the partially pure FeMoco-deficient MoFe protein. This insertion reaction required crude extract of the ΔnifHDK A. vinelandii strain CA12, Fe protein and MgATP. We used this as an assay to purify a required “insertion” protein. The purified protein was identified as GroEL, based on the molecular mass of its subunit (58.8 kDa), crossreaction with commercially available antibodies raised against E. coli GroEL, and its NH2-terminal polypeptide sequence. The NH2-terminal polypeptide sequence showed identity of up to 84% to GroEL from various organisms. Purified GroEL of A. vinelandii alone or in combination with MgATP and Fe protein did not support the FeMoco insertion into pure FeMoco-deficient MoFe protein, suggesting that there are still other proteins and/or factors missing. By using GroEL-containing extracts from a ΔnifHDK strain of A. vinelandii CA12 along with FeMoco, Fe protein, and MgATP, we were able to supply all required proteins and/or factors and obtained a fully active reconstituted E146D nifH MoFe protein. The involvement of the molecular chaperone GroEL in the insertion of a metal cluster into an apoprotein may have broad implications for the maturation of other metalloenzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various genetic conditions produce dysfunctional osteoclasts resulting in osteopetrosis or osteosclerosis. These include human pycnodysostosis, an autosomal recessive syndrome caused by cathepsin K mutation, cathepsin K-deficient mice, and mitf mutant rodent strains. Cathepsin K is a highly expressed cysteine protease in osteoclasts that plays an essential role in the degradation of protein components of bone matrix. Cathepsin K also is expressed in a significant fraction of human breast cancers where it could contribute to tumor invasiveness. Mitf is a member of a helix–loop–helix transcription factor subfamily, which contains the potential dimerization partners TFE3, TFEB, and TFEC. In mice, dominant negative, but not recessive, mutations of mitf, produce osteopetrosis, suggesting a functional requirement for other family members. Mitf also has been found—and TFE3 has been suggested—to modulate age-dependent changes in osteoclast function. This study identifies cathepsin K as a transcriptional target of Mitf and TFE3 via three consensus elements in the cathepsin K promoter. Additionally, cathepsin K mRNA and protein were found to be deficient in mitf mutant osteoclasts, and overexpression of wild-type Mitf dramatically up-regulated expression of endogenous cathepsin K in cultured human osteoclasts. Cathepsin K promoter activity was disrupted by dominant negative, but not recessive, mouse alleles of mitf in a pattern that closely matches their osteopetrotic phenotypes. This relationship between cathepsin K and the Mitf family helps explain the phenotypic overlap of their corresponding deficiencies in pycnodysostosis and osteopetrosis and identifies likely regulators of cathepsin K expression in bone homeostasis and human malignancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of extracellular physiologic signaling molecules act by stimulating GTP-binding protein (G-protein)-coupled receptors (GPCRs). To monitor directly the formation of the active state of a prototypical GPCR, we devised a method to site specifically attach fluorescein to an endogenous cysteine (Cys-265) at the cytoplasmic end of transmembrane 6 (TM6) of the β2 adrenergic receptor (β2AR), adjacent to the G-protein-coupling domain. We demonstrate that this tag reports agonist-induced conformational changes in the receptor, with agonists causing a decline in the fluorescence intensity of fluorescein-β2AR that is proportional to the biological efficacy of the agonist. We also find that agonists alter the interaction between the fluorescein at Cys-265 and fluorescence-quenching reagents localized to different molecular environments of the receptor. These observations are consistent with a rotation and/or tilting of TM6 on agonist activation. Our studies, when compared with studies of activation in rhodopsin, indicate a general mechanism for GPCR activation; however, a notable difference is the relatively slow kinetics of the conformational changes in the β2AR, which may reflect the different energetics of activation by diffusible ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol–anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K+. Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1–occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.